Original entry on oeis.org
0, 8, 32, 72, 128, 200, 288, 392, 512, 648, 800, 968, 1152, 1352, 1568, 1800, 2048, 2312, 2592, 2888, 3200, 3528, 3872, 4232, 4608, 5000, 5408, 5832, 6272, 6728, 7200, 7688, 8192, 8712, 9248, 9800, 10368, 10952, 11552, 12168, 12800, 13448, 14112, 14792, 15488, 16200
Offset: 0
-
[8*n^2: n in [0..50]]; // Vincenzo Librandi, Apr 26 2011
-
A139098:=n->8*n^2; seq(A139098(n), n=0..50); # Wesley Ivan Hurt, Jun 19 2014
-
8 Range[0, 50]^2 (* Wesley Ivan Hurt, Jun 19 2014 *)
LinearRecurrence[{3,-3,1},{0,8,32},50] (* Harvey P. Dale, Oct 05 2023 *)
-
a(n)=8*n^2 \\ Charles R Greathouse IV, Jun 17 2017
A144555
a(n) = 14*n^2.
Original entry on oeis.org
0, 14, 56, 126, 224, 350, 504, 686, 896, 1134, 1400, 1694, 2016, 2366, 2744, 3150, 3584, 4046, 4536, 5054, 5600, 6174, 6776, 7406, 8064, 8750, 9464, 10206, 10976, 11774, 12600, 13454, 14336, 15246, 16184, 17150, 18144, 19166, 20216, 21294, 22400, 23534, 24696
Offset: 0
A186029
a(n) = n*(7*n+3)/2.
Original entry on oeis.org
0, 5, 17, 36, 62, 95, 135, 182, 236, 297, 365, 440, 522, 611, 707, 810, 920, 1037, 1161, 1292, 1430, 1575, 1727, 1886, 2052, 2225, 2405, 2592, 2786, 2987, 3195, 3410, 3632, 3861, 4097, 4340, 4590, 4847, 5111, 5382, 5660, 5945, 6237, 6536, 6842, 7155, 7475
Offset: 0
From _Ilya Gutkovskiy_, Mar 31 2016: (Start)
. o o o o o o o o o o o o
. o o
. o o o o o o o o o o o o o o o o o o o o o o o o
. o o o o o o o o o o o o
. o o o o o o o o o o o o o o o o o o o o
. o o o o o o o o o o o o o o o o o o o o o o o o
. o o o o o o
. o o o o o o o o o o o o o o o o o o o o
.
. n=1 n=2 n=3 n=4
(End)
Cf. numbers of the form n*(d*n+10-d)/2 indexed in
A140090.
-
[n*(7*n+3)/2: n in [0..44]];
-
Table[(n - 1) (7 n - 4)/2, {n, 100}] (* Vladimir Joseph Stephan Orlovsky, Jul 06 2011 *)
LinearRecurrence[{3,-3,1},{0,5,17},50] (* Harvey P. Dale, Sep 07 2022 *)
-
a(n)=n*(7*n+3)/2 \\ Charles R Greathouse IV, Sep 24 2015
A244630
a(n) = 17*n^2.
Original entry on oeis.org
0, 17, 68, 153, 272, 425, 612, 833, 1088, 1377, 1700, 2057, 2448, 2873, 3332, 3825, 4352, 4913, 5508, 6137, 6800, 7497, 8228, 8993, 9792, 10625, 11492, 12393, 13328, 14297, 15300, 16337, 17408, 18513, 19652, 20825, 22032, 23273, 24548, 25857, 27200, 28577, 29988
Offset: 0
Cf. similar sequences of the type k*n^2:
A000290 (k = 1),
A001105 (k = 2),
A033428 (k = 3),
A016742 (k = 4),
A033429 (k = 5),
A033581 (k = 6),
A033582 (k = 7),
A139098 (k = 8),
A016766 (k = 9),
A033583 (k = 10),
A033584 (k = 11),
A135453 (k = 12),
A152742 (k = 13),
A144555 (k = 14),
A064761 (k = 15),
A016802 (k = 16), this sequence (k = 17),
A195321 (k = 18),
A244631 (k = 19),
A195322 (k = 20),
A064762 (k = 21),
A195323 (k = 22),
A244632 (k = 23),
A195824 (k = 24),
A016850 (k = 25),
A244633 (k = 26),
A244634 (k = 27),
A064763 (k = 28),
A244635 (k = 29),
A244636 (k = 30).
A132111
Triangle read by rows: T(n,k) = n^2 + k*n + k^2, 0 <= k <= n.
Original entry on oeis.org
0, 1, 3, 4, 7, 12, 9, 13, 19, 27, 16, 21, 28, 37, 48, 25, 31, 39, 49, 61, 75, 36, 43, 52, 63, 76, 91, 108, 49, 57, 67, 79, 93, 109, 127, 147, 64, 73, 84, 97, 112, 129, 148, 169, 192, 81, 91, 103, 117, 133, 151, 171, 193, 217, 243, 100, 111, 124, 139, 156, 175, 196, 219
Offset: 0
From _Philippe Deléham_, Apr 16 2014: (Start)
Triangle begins:
0;
1, 3;
4, 7, 12;
9, 13, 19, 27;
16, 21, 28, 37, 48;
25, 31, 39, 49, 61, 75;
36, 43, 52, 63, 76, 91, 108;
49, 57, 67, 79, 93, 109, 127, 147;
64, 73, 84, 97, 112, 129, 148, 169, 192;
81, 91, 103, 117, 133, 151, 171, 193, 217, 243;
...
(End)
-
Flatten[Table[n^2+k*n+k^2,{n,0,10},{k,0,n}]] (* Harvey P. Dale, Jun 10 2013 *)
A195041
Concentric heptagonal numbers.
Original entry on oeis.org
0, 1, 7, 15, 28, 43, 63, 85, 112, 141, 175, 211, 252, 295, 343, 393, 448, 505, 567, 631, 700, 771, 847, 925, 1008, 1093, 1183, 1275, 1372, 1471, 1575, 1681, 1792, 1905, 2023, 2143, 2268, 2395, 2527, 2661, 2800, 2941, 3087, 3235, 3388, 3543
Offset: 0
-
a195041 n = a195041_list !! n
a195041_list = scanl (+) 0 a047336_list
-- Reinhard Zumkeller, Jan 07 2012
-
[7*n^2/4+3*((-1)^n-1)/8: n in [0..50]]; // Vincenzo Librandi, Sep 29 2011
-
CoefficientList[Series[-((x (1+5 x+x^2))/((-1+x)^3 (1+x))),{x,0,80}],x] (* or *) LinearRecurrence[{2,0,-2,1},{0,1,7,15},80] (* Harvey P. Dale, Jan 18 2021 *)
-
a(n)=7*n^2\4 \\ Charles R Greathouse IV, Oct 07 2015
A016910
a(n) = (6*n)^2.
Original entry on oeis.org
0, 36, 144, 324, 576, 900, 1296, 1764, 2304, 2916, 3600, 4356, 5184, 6084, 7056, 8100, 9216, 10404, 11664, 12996, 14400, 15876, 17424, 19044, 20736, 22500, 24336, 26244, 28224, 30276, 32400, 34596, 36864, 39204, 41616, 44100, 46656, 49284, 51984, 54756, 57600, 60516, 63504, 66564, 69696, 72900
Offset: 0
Cf. similar sequences of the type k*n^2:
A000290 (k=1),
A001105 (k=2),
A033428 (k=3),
A016742 (k=4),
A033429 (k=5),
A033581 (k=6),
A033582 (k=7),
A139098 (k=8),
A016766 (k=9),
A033583 (k=10),
A033584 (k=11),
A135453 (k=12),
A152742 (k=13),
A144555 (k=14),
A064761 (k=15),
A016802 (k=16),
A244630 (k=17),
A195321 (k=18),
A244631 (k=19),
A195322 (k=20),
A064762 (k=21),
A195323 (k=22),
A244632 (k=23),
A195824 (k=24),
A016850 (k=25),
A244633 (k=26),
A244634 (k=27),
A064763 (k=28),
A244635 (k=29),
A244636 (k=30).
-
[(6*n)^2: n in [0..40]]; // Vincenzo Librandi, May 03 2011
-
(6*Range[0,40])^2 (* or *) LinearRecurrence[{3,-3,1},{0,36,144},40] (* Harvey P. Dale, Dec 25 2017 *)
Table[36 n^2, {n, 0, 45}] (* Omar E. Pol, Jun 07 2018 *)
-
a(n)=36*n^2 \\ Charles R Greathouse IV, Jun 10 2016
A064762
a(n) = 21*n^2.
Original entry on oeis.org
0, 21, 84, 189, 336, 525, 756, 1029, 1344, 1701, 2100, 2541, 3024, 3549, 4116, 4725, 5376, 6069, 6804, 7581, 8400, 9261, 10164, 11109, 12096, 13125, 14196, 15309, 16464, 17661, 18900, 20181, 21504, 22869, 24276, 25725, 27216, 28749
Offset: 0
Similar sequences are listed in
A244630.
-
[21*n^2 : n in [0..50]]; // Wesley Ivan Hurt, Jul 04 2014
-
21 Range[0, 50]^2 (* Wesley Ivan Hurt, Jul 04 2014 *)
LinearRecurrence[{3,-3,1},{0,21,84},40] (* Harvey P. Dale, Jul 29 2019 *)
-
a(n)=21*n^2 \\ Charles R Greathouse IV, Jun 17 2017
A249327
Rectangular array T(n,k) = f(n)*k^2, where f = A005117 (squarefree numbers); n, k >= 1; read by antidiagonals.
Original entry on oeis.org
1, 4, 2, 9, 8, 3, 16, 18, 12, 5, 25, 32, 27, 20, 6, 36, 50, 48, 45, 24, 7, 49, 72, 75, 80, 54, 28, 10, 64, 98, 108, 125, 96, 63, 40, 11, 81, 128, 147, 180, 150, 112, 90, 44, 13, 100, 162, 192, 245, 216, 175, 160, 99, 52, 14, 121, 200, 243, 320, 294, 252, 250
Offset: 1
Northwest corner:
1 4 9 16 25 36 49
2 8 18 32 50 72 98
3 12 27 48 75 108 147
5 20 45 80 125 180 245
6 24 54 96 150 216 294
-
z = 20; f = Select[Range[10000], SquareFreeQ[#] &];
u[n_, k_] := f[[n]]*k^2; t = Table[u[n, k], {n, 1, 20}, {k, 1, 20}];
TableForm[t] (* A249327 array *)
Table[u[k, n - k + 1], {n, 1, 15}, {k, 1, n}] // Flatten (* A249327 sequence *)
A064763
a(n) = 28*n^2.
Original entry on oeis.org
0, 28, 112, 252, 448, 700, 1008, 1372, 1792, 2268, 2800, 3388, 4032, 4732, 5488, 6300, 7168, 8092, 9072, 10108, 11200, 12348, 13552, 14812, 16128, 17500, 18928, 20412, 21952, 23548, 25200, 26908, 28672, 30492, 32368, 34300, 36288, 38332
Offset: 0
Similar sequences are listed in
A244630.
-
[28*n^2: n in [0..40]]; // Vincenzo Librandi, Mar 30 2015
-
I:=[0,28,112]; [n le 3 select I[n] else 3*Self(n-1)-3*Self(n-2)+Self(n-3): n in [1..40]]; // Vincenzo Librandi, Mar 30 2015
-
CoefficientList[Series[28 x (1 + x) / (1 - x)^3, {x, 0, 40}], x] (* Vincenzo Librandi, Mar 30 2015 *)
-
a(n)=28*n^2 \\ Charles R Greathouse IV, Jun 17 2017
Showing 1-10 of 15 results.
Comments