A033587 a(n) = 2*n*(4*n + 3).
0, 14, 44, 90, 152, 230, 324, 434, 560, 702, 860, 1034, 1224, 1430, 1652, 1890, 2144, 2414, 2700, 3002, 3320, 3654, 4004, 4370, 4752, 5150, 5564, 5994, 6440, 6902, 7380, 7874, 8384, 8910, 9452, 10010, 10584, 11174, 11780, 12402, 13040, 13694, 14364, 15050
Offset: 0
Links
- G. C. Greubel, Table of n, a(n) for n = 0..5000
- Index entries for linear recurrences with constant coefficients, signature (3,-3,1).
Programs
-
Mathematica
Table[2*n(4*n + 3), {n, 0, 100}] (* Vladimir Joseph Stephan Orlovsky, Jun 26 2011 *) LinearRecurrence[{3,-3,1},{0,14,44},80] (* Harvey P. Dale, Jun 05 2019 *)
-
PARI
a(n)=2*n*(4*n+3) \\ Charles R Greathouse IV, Jun 17 2017
Formula
a(n) = 2*A033954(n).
O.g.f.: 2*x*(7+x)/(1-x)^3. - R. J. Mathar, May 06 2008
a(n) = 16*n + a(n-1) - 2 with a(0)=0. - Vincenzo Librandi, Aug 05 2010
E.g.f.: (8*x^2 + 14*x)*exp(x). - G. C. Greubel, Jul 18 2017
From Vaclav Kotesovec, Aug 18 2018: (Start)
Sum_{n>=1} 1/a(n) = 2/9 + Pi/12 - log(2)/2.
Sum_{n>=1} (-1)^n/a(n) = 2/9 - Pi/(6*sqrt(2)) - log(2)/6 + log(1+sqrt(2))/(3*sqrt(2)). (End)
Comments