cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A033587 a(n) = 2*n*(4*n + 3).

Original entry on oeis.org

0, 14, 44, 90, 152, 230, 324, 434, 560, 702, 860, 1034, 1224, 1430, 1652, 1890, 2144, 2414, 2700, 3002, 3320, 3654, 4004, 4370, 4752, 5150, 5564, 5994, 6440, 6902, 7380, 7874, 8384, 8910, 9452, 10010, 10584, 11174, 11780, 12402, 13040, 13694, 14364, 15050
Offset: 0

Views

Author

Keywords

Comments

The inverse binomial transform is [0, 14, 16, 0, 0, 0, ...]. - R. J. Mathar, May 06 2008
Sequence found by reading the line from 0, in the direction 0, 14, ..., in the square spiral whose vertices are the triangular numbers A000217. Opposite numbers to the even hexagonal numbers A014635 in the same spiral. - Omar E. Pol, Sep 03 2011

Programs

Formula

a(n) = 2*A033954(n).
O.g.f.: 2*x*(7+x)/(1-x)^3. - R. J. Mathar, May 06 2008
a(n) = 16*n + a(n-1) - 2 with a(0)=0. - Vincenzo Librandi, Aug 05 2010
E.g.f.: (8*x^2 + 14*x)*exp(x). - G. C. Greubel, Jul 18 2017
From Vaclav Kotesovec, Aug 18 2018: (Start)
Sum_{n>=1} 1/a(n) = 2/9 + Pi/12 - log(2)/2.
Sum_{n>=1} (-1)^n/a(n) = 2/9 - Pi/(6*sqrt(2)) - log(2)/6 + log(1+sqrt(2))/(3*sqrt(2)). (End)