cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A033627 0-additive sequence: not the sum of any previous pair.

Original entry on oeis.org

1, 2, 4, 7, 10, 13, 16, 19, 22, 25, 28, 31, 34, 37, 40, 43, 46, 49, 52, 55, 58, 61, 64, 67, 70, 73, 76, 79, 82, 85, 88, 91, 94, 97, 100, 103, 106, 109, 112, 115, 118, 121, 124, 127, 130, 133, 136, 139, 142, 145, 148, 151, 154, 157, 160, 163, 166, 169, 172, 175
Offset: 1

Views

Author

Keywords

Comments

Conjecture: a(n+1) is the number of distinct numbers of steps required for the last n digits of integers to repeat themselves by iterating the map m -> m^2 + 1. - Ya-Ping Lu, Oct 19 2021

References

  • R. K. Guy, Unsolved Problems in Number Theory, C4

Crossrefs

See A244151 for another version.

Programs

  • Haskell
    import Data.List ((\\))
    a033627 n = a033627_list !! (n-1)
    a033627_list = f [1..] [] where
       f (x:xs) ys = x : f (xs \\ (map (+ x) ys)) (x:ys)
    -- Reinhard Zumkeller, Jan 11 2012
    
  • Mathematica
    Join[{1,2},Range[4,200,3]] (* Vladimir Joseph Stephan Orlovsky, Jan 27 2012 *)
    f[s_List] := Block[{k = s[[-1]] + 1, ss = Union[ Plus @@@ Subsets[s, {2}]]}, While[ MemberQ[ ss, k], k++]; Append[ s, k]]; Nest[f, {1}, 70] (* Robert G. Wilson v, Jun 23 2014 *)
    CoefficientList[Series[x(1+x^2+x^3)/(1-x)^2 , {x, 0, 70}], x] (* Stefano Spezia, Oct 04 2018 *)
  • PARI
    a(n)=if(n>2,3*n-5,n) \\ Charles R Greathouse IV, Sep 01 2016
    
  • Python
    def a(n): return 3*n-5 if n > 2 else n
    print([a(n) for n in range(1, 61)]) # Michael S. Branicky, Jun 09 2025

Formula

2 together with numbers of form 3k+1 (A016777).
From Gary W. Adamson, May 10 2008: (Start)
Equals binomial transform of [1, 1, 1, 0, -1, 2, -3, 4, -5, 6, -7, ...].
Equals sum of antidiagonal terms of the following arithmetic array: 1, 1, 1, 1, 1, ... 1, 2, 3, 4, 5, ... 1, 3, 5, 7, 9, ... . (End)
From Colin Barker, Sep 19 2012: (Start)
a(n) = 3*n - 5, for n > 2.
a(n) = 2*a(n-1) - a(n-2), for n > 4;
G.f.: x*(1+x^2+x^3)/(1-x)^2. (End)
E.g.f.: 5 + 3*x + x^2/2 + exp(x)*(3*x - 5). - Stefano Spezia, Apr 15 2023