A033632 Numbers k such that sigma(phi(k)) = phi(sigma(k)).
1, 9, 225, 242, 516, 729, 3872, 13932, 14406, 17672, 18225, 20124, 21780, 29262, 29616, 45996, 65025, 76832, 92778, 95916, 106092, 106308, 114630, 114930, 121872, 125652, 140130, 140625, 145794, 149124, 160986, 179562, 185100, 234876, 248652, 252978, 256860
Offset: 1
References
- R. K. Guy, Unsolved Problems in Number Theory, 2nd edition, Springer Verlag, 1994, section B42, p. 99.
Links
- Donovan Johnson, Table of n, a(n) for n = 1..10000 (first 200 terms from T. D. Noe)
- S. W. Golomb, Equality among number-theoretic functions, Unpublished manuscript. (Annotated scanned copy)
- Walter Nissen, sigma(phi(n)) = phi(sigma(n)), Up for the Count !
- Walter Nissen, sigma(phi(n)) = phi(sigma(n)): From "5" to "5 figures", Up for the Count !, Nov. 14, 2000
- Walter Nissen, Addendum to : sigma(phi()): From "5" to "5 figures", Up for the Count !, June 8, 2008
- Walter Nissen, Elaboration of : sigma(phi()): From "5" to "5 figures", Up for the Count !, Oct. 15, 2010
Programs
-
Haskell
a033632 n = a033632_list !! (n-1) a033632_list = filter (\x -> a062401 x == a062402 x) [1..] -- Reinhard Zumkeller, Jan 04 2013
-
Mathematica
Select[ Range[ 10^6 ], DivisorSigma[ 1, EulerPhi[ # ] ] == EulerPhi[ DivisorSigma[ 1, # ] ] & ]
-
PARI
is(n)=sigma(eulerphi(n))==eulerphi(sigma(n)) \\ Charles R Greathouse IV, May 09 2013
-
Python
from sympy import divisor_sigma as sigma, totient as phi def ok(n): return sigma(phi(n)) == phi(sigma(n)) def aupto(nn): return [m for m in range(1, nn+1) if ok(m)] print(aupto(10**4)) # Michael S. Branicky, Jan 09 2021
Comments