cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 38 results. Next

A092584 Numbers k such that sigma(phi(k)) == phi(sigma(k)) (mod k), that is, A033632(k)/k is an integer.

Original entry on oeis.org

1, 5, 9, 157, 225, 242, 516, 729, 3872, 13932, 14406, 17672, 18225, 20124, 21780, 29262, 29616, 45996, 65025, 76832, 92778, 95916, 106092, 106308, 114630, 114930, 121872, 125652, 140130, 140625, 145794, 149124, 160986, 179562, 185100, 234876
Offset: 1

Views

Author

Labos Elemer, Mar 01 2004

Keywords

Examples

			Includes but is not identical with A033632.
Below 10^7 only a(2) = 5 and a(4) = 157 give A033632(n)/n nonzero.
		

Crossrefs

Programs

  • Mathematica
    Select[Range[250000], Divisible[DivisorSigma[1, EulerPhi[#]] - EulerPhi[DivisorSigma[1, #]] , #] &]  (* Amiram Eldar, Mar 12 2020 *)
  • PARI
    is(n)=sigma(eulerphi(n))==Mod(eulerphi(sigma(n)),n) \\ Charles R Greathouse IV, Nov 27 2013

A062401 a(n) = phi(sigma(n)).

Original entry on oeis.org

1, 2, 2, 6, 2, 4, 4, 8, 12, 6, 4, 12, 6, 8, 8, 30, 6, 24, 8, 12, 16, 12, 8, 16, 30, 12, 16, 24, 8, 24, 16, 36, 16, 18, 16, 72, 18, 16, 24, 24, 12, 32, 20, 24, 24, 24, 16, 60, 36, 60, 24, 42, 18, 32, 24, 32, 32, 24, 16, 48, 30, 32, 48, 126, 24, 48, 32, 36, 32, 48, 24, 96, 36, 36, 60
Offset: 1

Views

Author

Jason Earls, Jul 08 2001

Keywords

Examples

			a(9) = 12 because sigma(9) = 13 and phi(13) = 12.
		

References

  • D. S. Mitrinovic et al., Handbook of Number Theory, Kluwer, p. 14.

Crossrefs

Programs

  • Haskell
    a062401 = a000010 . a000203  -- Reinhard Zumkeller, Jan 04 2013
  • Maple
    with(numtheory); A062401:=n->phi(sigma(n)); seq(A062401(n), n=1..50); # Wesley Ivan Hurt, Apr 07 2014
  • Mathematica
    Table[EulerPhi[DivisorSigma[1, n]], {n, 1, 80}] (* Carl Najafi, Aug 16 2011 *)
  • PARI
    vector(150, n, eulerphi(sigma(n)))
    
  • PARI
    for (n=1, 10000, write("b062401.txt", n, " ", eulerphi(sigma(n))) ) \\ Harry J. Smith, Aug 07 2009
    

Formula

sigma(a(n)) = A062402(sigma(n)) or phi(A062402(n)) = a(phi(n)). - Labos Elemer, Jul 22 2004

A028491 Numbers k such that (3^k - 1)/2 is prime.

Original entry on oeis.org

3, 7, 13, 71, 103, 541, 1091, 1367, 1627, 4177, 9011, 9551, 36913, 43063, 49681, 57917, 483611, 877843, 2215303, 2704981, 3598867, 7973131, 8530117
Offset: 1

Views

Author

N. J. A. Sloane, Jean-Yves Perrier (nperrj(AT)ascom.ch)

Keywords

Comments

If k is in the sequence and m=3^(k-1) then m is a term of A033632 (phi(sigma(m)) = sigma(phi(m))), so 3^(A028491-1) is a subsequence of A033632. For example since 9551 is in the sequence, phi(sigma(3^9550)) = sigma(phi(3^9550)). - Farideh Firoozbakht, Feb 09 2005
Salas lists these, except 3, in "Open Problems" p. 6 [March 2012], and proves that the Cantor primes > 3 are exactly the prime-valued cyclotomic polynomials of the form Phi_s(3^{s^j}) == 1 (mod 4).
Also, k such that 3^k-1 is a semiprime - see also A080892. - M. F. Hasler, Mar 19 2013

References

  • J. Brillhart et al., Factorizations of b^n +- 1. Contemporary Mathematics, Vol. 22, Amer. Math. Soc., Providence, RI, 2nd edition, 1985; and later supplements.
  • Paulo Ribenboim, The Little Book of Bigger Primes, Springer-Verlag NY 2004. See p. 236.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

Extensions

a(13) from Farideh Firoozbakht, Mar 27 2005
a(14)-a(16) from Robert G. Wilson v, Apr 11 2005
All larger terms only correspond to probable primes.
a(17) from Paul Bourdelais, Feb 08 2010
a(18) from Paul Bourdelais, Jul 06 2010
a(19) from Paul Bourdelais, Feb 05 2019
a(20) and a(21) from Ryan Propper, Dec 29 2021
a(22) from Ryan Propper, Nov 06 2023
a(23) from Ryan Propper, Nov 09 2023

A062402 a(n) = sigma(phi(n)).

Original entry on oeis.org

1, 1, 3, 3, 7, 3, 12, 7, 12, 7, 18, 7, 28, 12, 15, 15, 31, 12, 39, 15, 28, 18, 36, 15, 42, 28, 39, 28, 56, 15, 72, 31, 42, 31, 60, 28, 91, 39, 60, 31, 90, 28, 96, 42, 60, 36, 72, 31, 96, 42, 63, 60, 98, 39, 90, 60, 91, 56, 90, 31, 168, 72, 91, 63, 124, 42, 144, 63, 84, 60, 144
Offset: 1

Views

Author

Jason Earls, Jul 08 2001

Keywords

Comments

Makowski and Schinzel conjectured in 1964 that a(n) = sigma(phi(n)) >= n/2 for all n (B42 of Guy Unsolved Problems...). This has been verified for various classes of numbers and proved to be true in general if it is true for squarefree integers (see Cohen's paper). - Antonio G. Astudillo (afg_astudillo(AT)hotmail.com), Sep 07 2002
Atanassov proves the above conjecture. - Charles R Greathouse IV, Dec 06 2016

Examples

			a(9)= 12 because phi(9)= 6 and sigma(6)= 12.
		

References

  • Krassimir T. Atanassov, One property of φ and σ functions, Bull. Number Theory Related Topics 13 (1989), pp. 29-37.
  • A. Makowski and A. Schinzel, On the functions phi(n) and sigma(n), Colloq. Math. 13, 95-99 (1964).
  • D. S. Mitrinovic et al., Handbook of Number Theory, Kluwer, p. 13.

Crossrefs

Programs

  • Haskell
    a062402 = a000203 . a000010  -- Reinhard Zumkeller, Jan 04 2013
    
  • Magma
    [SumOfDivisors(EulerPhi(n)): n in [1..100]] //  Marius A. Burtea, Jan 19 2019
  • Maple
    with(numtheory); A062402:=n->sigma(phi(n)); seq(A062402(k), k=1..100); # Wesley Ivan Hurt, Nov 01 2013
  • Mathematica
    Table[DivisorSigma[1, EulerPhi[n]], {n, 1, 80}] (* Carl Najafi, Aug 16 2011 *)
  • PARI
    a(n)=sigma(eulerphi(n));
    vector(150,n,a(n))
    
  • Python
    from sympy import divisor_sigma, totient
    print([divisor_sigma(totient(n)) for n in range(1, 101)]) # Indranil Ghosh, Mar 18 2017
    

Formula

sigma(A062401(x)) = a(sigma(x)) or phi(a(x)) = A062401(phi(x)). - Labos Elemer, Jul 22 2004

A006872 Numbers k such that phi(k) = phi(sigma(k)).

Original entry on oeis.org

1, 3, 15, 26, 39, 45, 74, 104, 111, 117, 122, 146, 175, 183, 195, 219, 296, 314, 333, 357, 386, 471, 488, 549, 554, 555, 579, 584, 585, 608, 626, 646, 657, 794, 831, 842, 914, 915, 939, 962, 1071, 1082, 1095, 1191, 1226, 1256, 1263, 1292, 1322, 1346
Offset: 1

Views

Author

Keywords

References

  • S. W. Golomb, Equality among number-theoretic functions, Abstract 882-11-16, Abstracts Amer. Math. Soc., 14 (1993), 415-416.
  • R. K. Guy, Unsolved Problems in Number Theory, B42.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A000010, A000203, A062401, A353637 (characteristic function).
Positions of zeros in A353636.
Setwise difference of A353684 and A353683, and also of A353685 and A353686.
Intersection of A353684 and A353685.
Subsequences: A260021, A353634, A353635, A353679 (odd terms).

Programs

  • Haskell
    a006872 n = a006872_list !! (n-1)
    a006872_list = filter (\x -> a000010' x == a000010' (a000203' x)) [1..]
    -- Reinhard Zumkeller, Jul 14 2015
    
  • Magma
    [n:n in [1..2000]| EulerPhi(SumOfDivisors(n)) eq EulerPhi(n)]; // Marius A. Burtea, Jan 01 2019
  • Mathematica
    Select[Range@ 1350, EulerPhi@ # == EulerPhi@ DivisorSigma[1, #] &] (* Michael De Vlieger, Jan 01 2019 *)
  • PARI
    lista(nn) = {for (i=1, nn, if (eulerphi(i)==eulerphi(sigma(i)), print1(i, ", ")););} \\ Michel Marcus, May 25 2013
    

Extensions

More terms from Jud McCranie

A065395 Commutator of sigma and phi functions.

Original entry on oeis.org

0, -1, 1, -3, 5, -1, 8, -1, 0, 1, 14, -5, 22, 4, 7, -15, 25, -12, 31, 3, 12, 6, 28, -1, 12, 16, 23, 4, 48, -9, 56, -5, 26, 13, 44, -44, 73, 23, 36, 7, 78, -4, 76, 18, 36, 12, 56, -29, 60, -18, 39, 18, 80, 7, 66, 28, 59, 32, 74, -17, 138, 40, 43, -63, 100, -6
Offset: 1

Views

Author

Labos Elemer, Nov 05 2001

Keywords

Comments

Golomb (1993) proved that the terms are both positive and negative infinitely often. - Amiram Eldar, Feb 27 2024

Examples

			n = 13: sigma(13) = 14, phi(14) = 6, phi(13) = 12, sigma(12) = 28, a(13) = 28-6 = 22.
		

References

  • Solomon W. Golomb, Equality among number-theoretic functions, Abstracts Amer. Math. Soc., Vol. 14 (1993), pp. 415-416.

Crossrefs

Cf. A000010, A000203, A033632 (positions of 0's), A062401, A062402.

Programs

  • Magma
    [DivisorSigma(1, EulerPhi(n))-EulerPhi(DivisorSigma(1, n)): n in [1..70]]; // Bruno Berselli, Oct 20 2015
  • Maple
    with(numtheory); A065395:=n->sigma(phi(n))-phi(sigma(n)); seq(A065395(n), n=1..100); # Wesley Ivan Hurt, Dec 26 2013
  • Mathematica
    Table[DivisorSigma[1, EulerPhi[n]] - EulerPhi[DivisorSigma[1, n]], {n, 100}] (* T. D. Noe, Nov 04 2013 *)
  • PARI
    a(n) = { sigma(eulerphi(n)) - eulerphi(sigma(n)) } \\ Harry J. Smith, Oct 18 2009
    

Formula

a(n) = sigma(phi(n)) - phi(sigma(n)) = A000203(A000010(n)) - A000010(A000203(n)).
a(n) = A062402(n) - A062401(n). - Amiram Eldar, Feb 27 2024

A092588 Numbers k such that sigma(phi(k)) - phi(sigma(k)) is nonzero and divisible by sigma(k), that is A065395(k)/A000203(k) is a nonzero integer.

Original entry on oeis.org

7, 327, 463, 497, 617, 691, 751, 1207, 1633, 2451, 2643, 3143, 3337, 3503, 4939, 5609, 7093, 7597, 10327, 14987, 20427, 21103, 22345, 22481, 24739, 26491, 27193, 28077, 37753, 37915, 42711, 42717, 47647, 48043, 49243, 50071, 51727, 54823, 57478
Offset: 1

Views

Author

Labos Elemer, Mar 01 2004

Keywords

Examples

			(sigma(phi(x))-phi(sigma(x)))/sigma(x) quotient equals 1 for x=7, 2 for x=327, 3 for x=5609.
		

Crossrefs

Programs

  • Mathematica
    fs[x_] := EulerPhi[DivisorSigma[1, x]] sf[x_] := DivisorSigma[1, EulerPhi[x]] {t=Table[0, {100}], j=1}; Do[s=(sf[n]-fs[n])/DivisorSigma[1, n]; If[ !Equal[s, 0]&&IntegerQ[s], Print[n];t[[j]]=n;j=j+1], {n, 2, 1000000}] t
  • PARI
    is(n)=my(s=sigma(n),t=sigma(eulerphi(n))-eulerphi(s)); t && t%s==0 \\ Charles R Greathouse IV, Feb 14 2013

A290002 Numbers k such that psi(phi(k)) = phi(psi(k)).

Original entry on oeis.org

1, 10, 18, 20, 36, 40, 54, 70, 72, 78, 80, 108, 110, 140, 144, 156, 160, 162, 174, 198, 216, 220, 222, 230, 234, 246, 280, 288, 294, 312, 320, 324, 348, 396, 414, 426, 432, 438, 440, 444, 450, 460, 468, 470, 486, 492, 534, 560, 576, 588, 594, 624, 640, 648, 666, 696, 702, 770, 792, 828, 846, 852
Offset: 1

Views

Author

Altug Alkan, Sep 03 2017

Keywords

Comments

Squarefree terms are 1, 10, 70, 78, 110, 174, 222, 230, 246, 426, 438, ...
Common terms of this sequence and A033632 are 1, 14406, 544500, 141118050, ...
From Robert Israel, Sep 03 2017: (Start)
Includes 2^i*3^j if i >= 1 and j >= 2, i.e., 3*A033845, and A020714(n) for n >= 1.
If an even number m is in the sequence, then so is 2*m.
Are there any odd terms other than 1? (End)
a(1) = 1 is the only odd term. LHS of equation allows for 1 and 3 but only for k <= 6. RHS allows for 1 and only for k = 1. - Torlach Rush, Jul 28 2023

Crossrefs

Programs

  • Maple
    psi:= proc(n)  n*mul((1+1/i[1]), i=ifactors(n)[2]) end:
    select(psi @ numtheory:-phi = numtheory:-phi @ psi, [$1..1000]); # Robert Israel, Sep 03 2017
  • Mathematica
    f[n_] := n Sum[MoebiusMu[d]^2/d, {d, Divisors@ n}]; Select[Range[10^3], f[EulerPhi@ #] == EulerPhi[f@ #] &] (* Michael De Vlieger, Sep 03 2017 *)
  • PARI
    a001615(n) = my(f=factor(n)); prod(i=1, #f~, f[i, 1]^f[i, 2] + f[i, 1]^(f[i, 2]-1));
    isok(n) = eulerphi(a001615(n))==a001615(eulerphi(n)); \\ after Charles R Greathouse IV at A001615

A078148 Numbers k such that d(phi(k)) = phi(d(k)), where d=A000005 and phi=A000010.

Original entry on oeis.org

1, 2, 4, 6, 16, 24, 30, 36, 64, 384, 408, 480, 510, 1024, 1296, 1560, 1680, 2304, 2640, 3480, 4096, 5440, 5520, 6360, 9240, 11280, 14040, 14160, 14400, 15120, 15960, 17880, 19320, 19920, 20760, 22848, 24480, 25680, 26880, 30360, 32280, 35160
Offset: 1

Views

Author

Labos Elemer, Nov 26 2002

Keywords

Comments

2^m is in the sequence iff m=0 or m+1 is prime (the proof is easy). Also all numbers of the form 3*2^(2^m-1) are in the sequence because d(phi(3*2^(2^m-1))) - phi(d(3*2^(2^m-1)))= d(2*2^(2^m-2)) - phi(2*2^m) = d(2^(2^m-1)) - phi(2^(m+1)) = 2^m - 2^m = 0. So this sequence is infinite. - Farideh Firoozbakht, Jan 25 2006
Next odd term after 1 is 15230439315 (cf. A378315). - Max Alekseyev, Jan 09 2025

Examples

			k = 24: d(24) = 8, phi(8) = 4, phi(24) = 8, d(8) = 4, so 24 is a term.
		

Crossrefs

The odd terms are listed in A378315.

Programs

  • Mathematica
    cm[x_] := DivisorSigma[0, EulerPhi[x]]-EulerPhi[DivisorSigma[0, x]] Do[s=cm[n]; If[Equal[s, 0], Print[n]], {n, 1, 100000}]
    Select[Range[36000],DivisorSigma[0,EulerPhi[#]]==EulerPhi[ DivisorSigma[ 0,#]]&] (* Harvey P. Dale, Sep 02 2013 *)
  • PARI
    is(n)=numdiv(eulerphi(n))==eulerphi(numdiv(n)) \\ Charles R Greathouse IV, Feb 21 2013

A092586 Numbers k such that sigma(phi(k))-phi(sigma(k)) is nonzero and is divisible by (k+1), that is A065395(k)/(k+1) = (phi(sigma(k))-sigma(phi(k)))/(k+1) is a nonzero integer.

Original entry on oeis.org

7, 87, 231, 463, 617, 691, 751, 855, 1059, 1127, 2795, 4819, 11999, 18527, 22481, 75311, 121939, 232901, 256751, 288883, 313919, 371519, 845831, 1285841, 1762799, 1815167, 7195199, 9096191, 40324121, 93070943, 99388823, 113140151, 238072223, 487394063
Offset: 1

Views

Author

Labos Elemer, Mar 01 2004

Keywords

Examples

			(sigma(phi(x))-phi(sigma(x)))/(x+1) equals 1 if x=7; is 2 if x=463; is 3 if x=4819.
		

Crossrefs

Programs

  • Mathematica
    f[ x_] := EulerPhi[ DivisorSigma[1, x]] - DivisorSigma[1, EulerPhi[x]]; t = {}; Do[ s = f[n]; If[ s != 0 && Mod[ s, n + 1] == 0, Print[n]; AppendTo[t, n]], {n, 2*10^8}]; t

Extensions

Edited and extended by Robert G. Wilson v, Mar 03 2004
a(33)-a(34) from Donovan Johnson, Mar 04 2013
Showing 1-10 of 38 results. Next