cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 76 results. Next

A096866 Function A062402(x) = sigma(phi(x)) is iterated. Starting with n, a(n) is the smallest term arising in trajectory, either in transient or in terminal cycle.

Original entry on oeis.org

1, 1, 3, 3, 5, 3, 7, 7, 7, 7, 7, 7, 13, 7, 15, 15, 17, 7, 19, 15, 21, 7, 23, 15, 25, 26, 27, 28, 29, 15, 31, 31, 28, 31, 31, 28, 37, 31, 31, 31, 31, 28, 43, 28, 31, 28, 31, 31, 49, 28, 51, 31, 53, 31, 31, 31, 57, 31, 31, 31, 61, 31, 63, 63, 65, 28, 67, 63, 31, 31, 71, 31, 73, 74
Offset: 1

Views

Author

Labos Elemer, Jul 21 2004

Keywords

Examples

			n=240: list={240,127,312,[252,195],252,...}, a(240)=127, a transient;
n=254: list={254,312,[252,195],252,...}, a(254)=195, a recurrent term.
		

Crossrefs

Cf. A062401, A062402, A096862, A096863, A096864 (largest term), A096993.
Cf. also A096865.

Programs

  • Mathematica
    gf[x_] :=DivisorSigma[1, EulerPhi[x]] gite[x_, hos_] :=NestList[gf, x, hos] Table[Min[gite[w, 20]], {w, 1, 256}]
  • Scheme
    (define (A096866 n) (let loop ((visited (list n)) (m n)) (let ((next (A062402 (car visited)))) (cond ((member next visited) m) (else (loop (cons next visited) (min m next))))))) ;; Antti Karttunen, Nov 18 2017

A096993 Function A062402(x) = sigma(phi(x)) is iterated with initial value=n. a(n) is the length of cycle into which the trajectory merges.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 2, 2, 2, 2, 2, 2, 1, 2, 1, 1, 3, 2, 3, 1, 1, 2, 1, 1, 1, 1, 3, 1, 3, 1, 3, 3, 1, 3, 3, 1, 2, 3, 3, 3, 3, 1, 2, 1, 3, 1, 3, 3, 2, 1, 2, 3, 2, 3, 3, 3, 2, 3, 3, 3, 2, 3, 2, 2, 2, 1, 2, 2, 3, 3, 2, 3, 2, 2, 3, 2, 2, 3, 2, 2, 2, 3, 2, 3, 2, 2, 2, 3, 2, 3, 2, 3, 2, 3, 2, 2, 2, 2, 2, 3, 2, 2, 2, 2, 2
Offset: 1

Views

Author

Labos Elemer, Jul 19 2004

Keywords

Comments

No 5's present among the first 16384 terms, but they should exist as A095955 has them too. - Antti Karttunen, Dec 04 2017

Crossrefs

Programs

  • Scheme
    (define (A096993 n) (if (= 1 n) n (let loop ((visited (list n)) (i 1)) (let ((next (A062402 (car visited)))) (cond ((member next visited) => (lambda (prepath) (+ 1 (- i (length prepath))))) (else (loop (cons next visited) (+ 1 i)))))))) ;; Antti Karttunen, Dec 04 2017

A096864 Function A062402(x) = sigma(phi(x)) is iterated. Starting with n, a(n) is the largest term arising in trajectory, either in transient or in terminal cycle.

Original entry on oeis.org

1, 2, 3, 4, 12, 6, 12, 12, 12, 12, 18, 12, 28, 14, 15, 16, 72, 18, 72, 20, 28, 22, 36, 24, 42, 28, 72, 28, 72, 30, 72, 72, 42, 72, 72, 36, 252, 72, 72, 72, 90, 42, 252, 44, 72, 46, 72, 72, 252, 50, 252, 72, 252, 72, 90, 72, 252, 72, 90, 72, 168, 72, 252, 252, 168, 66, 168, 252
Offset: 1

Views

Author

Labos Elemer, Jul 21 2004

Keywords

Examples

			n=256: list={256,255,255}, a(256)=256 as a transient term;
n=101: list={101,217,546,403,1170,819,[1240,1512],1240,...}, a(101)=1512 as a cycle term.
		

Crossrefs

Cf. A062401, A062402, A066437, A096862, A096863, A096866 (smallest term), A096993.
Cf. also A096861.

Programs

  • Mathematica
    gf[x_] :=DivisorSigma[1, EulerPhi[x]] gite[x_, hos_] :=NestList[gf, x, hos] Table[Max[gite[w, 20]], {w, 1, 256}]
    Table[Max[NestList[DivisorSigma[1,EulerPhi[#]]&,n,20]],{n,70}] (* Harvey P. Dale, May 13 2019 *)
  • Scheme
    (define (A096864 n) (let loop ((visited (list n)) (m n)) (let ((next (A062402 (car visited)))) (cond ((member next visited) m) (else (loop (cons next visited) (max m next))))))) ;; Antti Karttunen, Nov 18 2017

Formula

a(n) = max(n, A066437(n)). - Antti Karttunen, Dec 06 2017

A096854 a(n) = A062402(2^n-1).

Original entry on oeis.org

1, 3, 12, 15, 72, 91, 312, 255, 1240, 1860, 4123, 5080, 26208, 34200, 93600, 65535, 334368, 416560, 1420800, 1596364, 6146800, 5949696, 20485332, 23788842, 120519630, 194016600, 358132380, 458803800, 1674738000, 2166798816, 6045990912, 4294967295, 22739738112, 37862623140
Offset: 1

Views

Author

Labos Elemer, Jul 19 2004

Keywords

Crossrefs

Programs

  • Mathematica
    Table[DivisorSigma[1, EulerPhi[2^n - 1]], {n, 1, 30}]
  • PARI
    a(n) = sigma(eulerphi(2^n-1)); \\ Michel Marcus, Aug 30 2019

Formula

a(n) = A000203(A053287(n)). - Amiram Eldar, Jun 04 2024

Extensions

More terms from Michel Marcus, Aug 30 2019

A096856 a(n) = A062402(2^n+1).

Original entry on oeis.org

1, 3, 7, 12, 31, 42, 124, 224, 511, 847, 1953, 2688, 12264, 18816, 29127, 72540, 131071, 195048, 558523, 1077440, 3164112, 4552020, 10890040, 10342080, 54525848, 73260781, 155671040, 318848400, 1080311232, 964580240, 3070642080, 4340711424, 13722819600, 19039027200
Offset: 0

Views

Author

Labos Elemer, Jul 19 2004

Keywords

Crossrefs

Programs

  • Mathematica
    Table[DivisorSigma[1, EulerPhi[2^n + 1]], {n, 0, 30}]

Formula

a(n) = A000203(A053285(n)). - Amiram Eldar, Jun 04 2024

Extensions

Offset changed to 0, a(0) prepended and three more terms added by Amiram Eldar, Jun 04 2024

A096862 Function A062402(x)=sigma(phi(x)) is iterated. Starting with n, a(n) is the count of distinct terms arising during this trajectory; a(n)=t(n)+c(n)=t+c, where t is the number of transient terms, c is the number of recurrent terms [in the terminal cycle].

Original entry on oeis.org

1, 2, 1, 2, 3, 2, 2, 3, 3, 3, 4, 2, 2, 3, 1, 2, 4, 3, 5, 2, 2, 4, 3, 2, 3, 2, 5, 1, 5, 2, 3, 4, 3, 4, 4, 2, 4, 5, 4, 4, 5, 2, 6, 3, 4, 3, 4, 4, 6, 3, 5, 4, 7, 5, 5, 4, 4, 5, 5, 3, 3, 4, 4, 5, 3, 3, 4, 5, 5, 4, 4, 3, 3, 4, 5, 4, 3, 4, 3, 5, 6, 5, 5, 4, 5, 6, 6, 5, 4, 4, 3, 5, 3, 4, 3, 5, 3, 6, 3, 5, 8, 5, 4, 3, 3
Offset: 1

Views

Author

Labos Elemer, Jul 21 2004

Keywords

Examples

			n=256: list={256,255,255}, transient=t=1, cycle=c=1, a(256)=t+c=2.
		

Crossrefs

Programs

  • Mathematica
    gf[x_] :=DivisorSigma[1, EulerPhi[x]] gite[x_, hos_] :=NestList[gf, x, hos] Table[Length[Union[gite[w, 1000]]], {w, 1, 256}]

A096863 Function A062402(x)=sigma(phi(x)) is iterated. Starting with n, a(n) is the count of transient terms of trajectory.

Original entry on oeis.org

0, 1, 0, 1, 1, 1, 0, 1, 1, 1, 2, 0, 1, 1, 0, 1, 1, 1, 2, 1, 1, 2, 2, 1, 2, 1, 2, 0, 2, 1, 0, 1, 2, 1, 1, 1, 2, 2, 1, 1, 2, 1, 4, 2, 1, 2, 1, 1, 4, 2, 3, 1, 5, 2, 2, 1, 2, 2, 2, 0, 1, 1, 2, 3, 1, 2, 2, 3, 2, 1, 2, 0, 1, 2, 2, 2, 1, 1, 1, 3, 4, 2, 3, 1, 3, 4, 4, 2, 2, 1, 1, 2, 1, 1, 1, 3, 1, 4, 1, 2, 6, 3, 2, 1, 1
Offset: 1

Views

Author

Labos Elemer, Jul 21 2004

Keywords

Comments

a(n)=0 means that n is a recurrent term from A096998.

Examples

			n=256: list={256,255,255}, a(256)=1;
n=101: list={101,217,546,403,1170,819,[1240,1512],1240,...,a(101)=6;
		

Crossrefs

Formula

a(n) = A096861(n)-A096993(n).

A096995 Number of transient terms if f(x) = sigma(phi(x)) = A062402 is iterated at initial value = 2^n.

Original entry on oeis.org

0, 1, 1, 1, 1, 1, 3, 3, 1, 2, 3, 5, 2, 3, 6, 15, 1, 6, 8, 3, 15, 9, 4, 65, 44, 82, 83, 77, 75, 48, 26, 43, 1
Offset: 0

Views

Author

Labos Elemer, Jul 22 2004

Keywords

Comments

For transient lengths of iterations A062401(x) or A062402(x), if started at 2^n, holds that A096994(n)+1 = a(n). Corresponding cycle lengths satisfy A096852(n-1) = A096857(n). Behind these observation several relationships stand, e.g., sigma(A062401(x)) = A062402(sigma(x)) or phi(A062402(x)) = A062401(phi(x)).
For initial value = 2^33 more than 38000 iterations did not lead to a recurrent term, so possibly there is no cycle. a(34) through a(39) are 8, 52, 71, 24, 40, 12. - Klaus Brockhaus, Jul 19 2007

Examples

			Trajectory of 2^0 is 1,1, ...; there are zero transient terms preceding the 1-cycle (1), so a(0) = 0.
Trajectory of 2^14 is 16384, 16383, 34200, 30480, 26520, 16380, 10200, 6138, 6045, 9906, 9920, 12264, 10200, ...; there are six transient terms preceding the 6-cycle (10200, 6138, 6045, 9906, 9920, 12264), so a(14) = 6.
		

Crossrefs

Programs

Extensions

Edited and corrected by Klaus Brockhaus, Jul 19 2007

A065390 Peak values reached by A062402 at the sites listed in A065389.

Original entry on oeis.org

1, 3, 7, 12, 18, 28, 31, 39, 42, 56, 72, 91, 96, 98, 168, 195, 252, 280, 312, 360, 372, 392, 546, 576, 744, 840, 864, 992, 1092, 1170, 1344, 1512, 1680, 1860, 1872, 2016, 2240, 2418, 2880, 3224, 3600, 3844, 4320, 4368, 4914, 5082, 5952, 6045, 6552, 7440
Offset: 1

Views

Author

Labos Elemer, Nov 05 2001

Keywords

Crossrefs

Programs

  • Mathematica
    a=0; s=0; Do[s=DivisorSigma[1, EulerPhi[n]]; If[s>a, a=s; Print[s]], {n, 1, 10000}]
    (* Second program: *)
    Union@ FoldList[Max, Array[DivisorSigma[1, EulerPhi[#]] &, 2200]] (* Michael De Vlieger, Jun 19 2018 *)
  • PARI
    { n=r=0; for (m=1, 10^9, x=sigma(eulerphi(m)); if (x > r, r=x; write("b065390.txt", n++, " ", x); if (n==500, return)) ) } \\ Harry J. Smith, Oct 18 2009

Formula

a(n) = A062402(A065389(n)). - Amiram Eldar, Mar 22 2025

A096988 Initial values for f(x)=sigma(phi(x))=A062402(x) such that iteration of f ends in cycle of length=1.

Original entry on oeis.org

1, 2, 3, 4, 6, 13, 15, 16, 20, 21, 23, 24, 25, 26, 28, 30, 33, 36, 42, 44, 46, 50, 66, 157, 169, 203, 215, 237, 241, 245, 255, 256, 261, 272, 275, 287, 303, 305, 314, 316, 320, 325, 338, 340, 344, 347, 367, 369, 375, 384, 385, 392, 393, 404, 406, 408, 429, 430
Offset: 1

Views

Author

Labos Elemer, Jul 19 2004

Keywords

Crossrefs

Programs

  • Mathematica
    a = {}; Do[s = {n}; While[! MemberQ[s, k = DivisorSigma[1, EulerPhi[s[[-1]]]]], AppendTo[s, k]]; If[s[[-1]] == k, AppendTo[a, n]], {n, 430}]; a (* Ivan Neretin, Dec 15 2016 *)
Showing 1-10 of 76 results. Next