cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A033632 Numbers k such that sigma(phi(k)) = phi(sigma(k)).

Original entry on oeis.org

1, 9, 225, 242, 516, 729, 3872, 13932, 14406, 17672, 18225, 20124, 21780, 29262, 29616, 45996, 65025, 76832, 92778, 95916, 106092, 106308, 114630, 114930, 121872, 125652, 140130, 140625, 145794, 149124, 160986, 179562, 185100, 234876, 248652, 252978, 256860
Offset: 1

Views

Author

Keywords

Comments

The largest term of this sequence that I found is 3^9550. Also, if (1/2)*(3^(k+1)-1) is prime (k+1 is a term of A028491) then 3^k is in the sequence, namely sigma(phi(3^k)) = phi(sigma(3^k)) (the proof is easy). - Farideh Firoozbakht, Feb 09 2005

References

  • R. K. Guy, Unsolved Problems in Number Theory, 2nd edition, Springer Verlag, 1994, section B42, p. 99.

Crossrefs

Programs

  • Haskell
    a033632 n = a033632_list !! (n-1)
    a033632_list = filter (\x -> a062401 x == a062402 x) [1..]
    -- Reinhard Zumkeller, Jan 04 2013
    
  • Mathematica
    Select[ Range[ 10^6 ], DivisorSigma[ 1, EulerPhi[ # ] ] == EulerPhi[ DivisorSigma[ 1, # ] ] & ]
  • PARI
    is(n)=sigma(eulerphi(n))==eulerphi(sigma(n)) \\ Charles R Greathouse IV, May 09 2013
    
  • Python
    from sympy import divisor_sigma as sigma, totient as phi
    def ok(n): return sigma(phi(n)) == phi(sigma(n))
    def aupto(nn): return [m for m in range(1, nn+1) if ok(m)]
    print(aupto(10**4)) # Michael S. Branicky, Jan 09 2021

Formula

A062401(a(n)) = A062402(a(n)). - Reinhard Zumkeller, Jan 04 2013

A385122 a(n) = d(phi(n)) - phi(d(n)) where d(n) = A000005(n) is the number of divisors and phi(n) = A000010(n) is the Euler totient function.

Original entry on oeis.org

0, 0, 1, 0, 2, 0, 3, 1, 2, 1, 3, 1, 5, 2, 2, 0, 4, 2, 5, 2, 4, 2, 3, 0, 4, 4, 4, 4, 5, 0, 7, 3, 4, 3, 6, 0, 8, 4, 6, 1, 7, 2, 7, 4, 6, 2, 3, 1, 6, 4, 4, 6, 5, 2, 6, 4, 7, 4, 3, 1, 11, 6, 7, 0, 8, 2, 7, 4, 4, 4, 7, 4, 11, 7, 6, 7, 10, 4, 7, 2, 4, 6, 3, 4, 5, 6
Offset: 1

Views

Author

Sean A. Irvine, Jun 18 2025

Keywords

Comments

First negative value is a(120) = -2.

Crossrefs

Programs

  • Mathematica
    A385122[n_] := DivisorSigma[0, EulerPhi[n]] - EulerPhi[DivisorSigma[0, n]];
    Array[A385122, 100] (* Paolo Xausa, Jun 19 2025 *)
  • PARI
    a(n) = numdiv(eulerphi(n)) - eulerphi(numdiv(n)); \\ Michel Marcus, Jun 19 2025

Formula

a(n) = A000005(A000010(n)) - A000010(A000005(n)).
a(n) = A062821(n) - A163109(n).

A378315 Odd numbers k such that d(phi(k)) = phi(d(k)), where d=A000005 and phi=A000010.

Original entry on oeis.org

1, 15230439315, 18887708385, 74989937295, 78103226565, 86031400455, 114958521405, 179883837315, 210096608085, 367588711035, 418094581905, 461441147895, 590648954805, 649146021615, 685787041485, 836850895335, 874197762165, 990695282031, 996070731201, 1002913997085, 1016370465201, 1029306324501, 1029869788311, 1039854060045, 1043905592457
Offset: 1

Views

Author

Max Alekseyev, Jan 09 2025

Keywords

Comments

For n > 1, we have A001222(a(n)) >= 9. The smallest a(n) with A001222(a(n)) = 9 is a(65) = 1244586078645.

Crossrefs

Subsequence of A078148.

A218006 Numbers n such that sigma(tau(phi(n))) = tau(phi(sigma(n))) = phi(sigma(tau(n))).

Original entry on oeis.org

1, 34, 36, 96, 128, 468, 1200, 21216, 102060, 110976, 117684, 211428, 331380, 366660, 437220, 511680, 530712, 706560, 710388, 726240, 732240, 759360, 838080, 845376, 875840, 911040, 975936, 1014016, 1041216, 1093440, 1110720, 1141440, 1167696, 1289280
Offset: 1

Views

Author

Jayanta Basu, Mar 26 2013

Keywords

Comments

Here phi denotes Euler's totient function, tau(n) denotes number of divisors of n and sigma(n) denotes sum of all divisors of n. Only cyclic rotation of operators is considered.

Crossrefs

Programs

  • Mathematica
    Select[Range[1000000], DivisorSigma[1, DivisorSigma[0, EulerPhi[#]]] == DivisorSigma[0, EulerPhi[DivisorSigma[1, #]]] == EulerPhi[DivisorSigma[1, DivisorSigma[0, #]]] &]
Showing 1-4 of 4 results.