cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 12 results. Next

A092588 Numbers k such that sigma(phi(k)) - phi(sigma(k)) is nonzero and divisible by sigma(k), that is A065395(k)/A000203(k) is a nonzero integer.

Original entry on oeis.org

7, 327, 463, 497, 617, 691, 751, 1207, 1633, 2451, 2643, 3143, 3337, 3503, 4939, 5609, 7093, 7597, 10327, 14987, 20427, 21103, 22345, 22481, 24739, 26491, 27193, 28077, 37753, 37915, 42711, 42717, 47647, 48043, 49243, 50071, 51727, 54823, 57478
Offset: 1

Views

Author

Labos Elemer, Mar 01 2004

Keywords

Examples

			(sigma(phi(x))-phi(sigma(x)))/sigma(x) quotient equals 1 for x=7, 2 for x=327, 3 for x=5609.
		

Crossrefs

Programs

  • Mathematica
    fs[x_] := EulerPhi[DivisorSigma[1, x]] sf[x_] := DivisorSigma[1, EulerPhi[x]] {t=Table[0, {100}], j=1}; Do[s=(sf[n]-fs[n])/DivisorSigma[1, n]; If[ !Equal[s, 0]&&IntegerQ[s], Print[n];t[[j]]=n;j=j+1], {n, 2, 1000000}] t
  • PARI
    is(n)=my(s=sigma(n),t=sigma(eulerphi(n))-eulerphi(s)); t && t%s==0 \\ Charles R Greathouse IV, Feb 14 2013

A065394 Increasing values of A065395: a(n) = A065395(A065393(n)).

Original entry on oeis.org

1, 5, 8, 14, 22, 25, 31, 48, 56, 73, 78, 80, 138, 159, 163, 210, 240, 248, 312, 314, 474, 482, 634, 648, 684, 723, 836, 896, 978, 1026, 1134, 1184, 1320, 1344, 1410, 1424, 1608, 1686, 1760, 1776, 1862, 2226, 2624, 2824, 2936, 3024, 3120, 3280, 3460, 3660
Offset: 1

Views

Author

Labos Elemer, Nov 05 2001

Keywords

Crossrefs

Programs

  • Mathematica
    a=0; s=0; Do[s=DivisorSigma[1, EulerPhi[n]]-EulerPhi[DivisorSigma[1, n]]; If[s>a, a=s; Print[s]], {n, 1, 10000}]; (* Output is s. *)
  • PARI
    { n=r=0; for (m=1, 10^9, x=sigma(eulerphi(m)) - eulerphi(sigma(m)); if (x > r, r=x; write("b065394.txt", n++, " ", x); if (n==500, return)) ) } \\ Harry J. Smith, Oct 18 2009

Formula

A092586 Numbers k such that sigma(phi(k))-phi(sigma(k)) is nonzero and is divisible by (k+1), that is A065395(k)/(k+1) = (phi(sigma(k))-sigma(phi(k)))/(k+1) is a nonzero integer.

Original entry on oeis.org

7, 87, 231, 463, 617, 691, 751, 855, 1059, 1127, 2795, 4819, 11999, 18527, 22481, 75311, 121939, 232901, 256751, 288883, 313919, 371519, 845831, 1285841, 1762799, 1815167, 7195199, 9096191, 40324121, 93070943, 99388823, 113140151, 238072223, 487394063
Offset: 1

Views

Author

Labos Elemer, Mar 01 2004

Keywords

Examples

			(sigma(phi(x))-phi(sigma(x)))/(x+1) equals 1 if x=7; is 2 if x=463; is 3 if x=4819.
		

Crossrefs

Programs

  • Mathematica
    f[ x_] := EulerPhi[ DivisorSigma[1, x]] - DivisorSigma[1, EulerPhi[x]]; t = {}; Do[ s = f[n]; If[ s != 0 && Mod[ s, n + 1] == 0, Print[n]; AppendTo[t, n]], {n, 2*10^8}]; t

Extensions

Edited and extended by Robert G. Wilson v, Mar 03 2004
a(33)-a(34) from Donovan Johnson, Mar 04 2013

A092587 Numbers k such that sigma(phi(k))-phi(sigma(k)) is nonzero and divisible by phi(k), that is A065395(k)/A000010(k) is a nonzero integer.

Original entry on oeis.org

2, 18, 21, 99, 133, 151, 175, 183, 350, 366, 449, 450, 477, 532, 581, 645, 702, 843, 1072, 1253, 1346, 1508, 1645, 1833, 2085, 2097, 2150, 2421, 3668, 3950, 4223, 4312, 4453, 5264, 6601, 6853, 7128, 7423, 7622, 7713, 8325, 9028, 9364, 9707, 10820
Offset: 1

Views

Author

Labos Elemer, Mar 01 2004

Keywords

Examples

			(sigma(phi(x))-phi(sigma(x)))/phi(x) quotient equals -3 for x=450, -2 for x=18, -1 for x=2, 1 for x=21, 2 for x=99, 3 for x=4223.
		

Crossrefs

Programs

  • Mathematica
    fs[x_] := EulerPhi[DivisorSigma[1, x]] sf[x_] := DivisorSigma[1, EulerPhi[x]] {t=Table[0, {60}], j=1}; Do[s=(sf[n]-fs[n])/EulerPhi[n]; If[ !Equal[s, 0]&&IntegerQ[s], Print[n];t[[j]]=n;j=j+1], {n, 2, 1000000}] t

A092585 Numbers k such that sigma(phi(k))-phi(sigma(k)) is nonzero and is divisible by (k-1), that is A065395(k)/(k-1) = (phi(sigma(k))-sigma(phi(k)))/(k-1) is a nonzero integer.

Original entry on oeis.org

2, 4, 16, 64, 151, 449, 3403, 4096, 4267, 9307, 35905, 65536, 247285, 262144, 17625601, 33126625, 399288961, 649232833, 947278081, 1073741824, 2102485441, 4555788385, 5203567081, 6103058177, 7115716609
Offset: 1

Views

Author

Labos Elemer, Mar 01 2004

Keywords

Examples

			(sigma(phi(x))-phi(sigma(x)))/(x-1) is -1 if x=2,4,16,64,4096,65536,262144 and is 2 if x=151,449,3403, etc.
		

Crossrefs

Programs

  • Mathematica
    f[ x_] := EulerPhi[ DivisorSigma[1, x]] - DivisorSigma[1, EulerPhi[x]]; t = {}; Do[ s = f[n]; If[ s != 0 && Mod[ s, n - 1] == 0, Print[n]; AppendTo[t, n]], {n, 2*10^8}]; t

Extensions

More terms from Robert G. Wilson v, Mar 03 2004
a(17)-a(25) from Donovan Johnson, Mar 04 2013

A092589 a(n) = -A065395(2^n).

Original entry on oeis.org

0, 1, 3, 1, 15, 5, 63, 1, 177, 89, 913, -319, 4095, 2393, 10617, 1, 65535, 8897, 262143, -44287, 729537, 543553, 4015777, -1753087, 15622785, 11162969, 46358529, -1452031, 265390977, -2270911, 1073741823, 1, 2668569153, 2862962009, 15344762817, -8238350335, 68103158337, 45811586393
Offset: 0

Views

Author

Labos Elemer, Mar 02 2004

Keywords

Crossrefs

Programs

  • Mathematica
    fs[x_] := EulerPhi[DivisorSigma[1, x]]; sf[x_] := DivisorSigma[1, EulerPhi[x]]; Table[fs[2^w]-sf[2^w], {w, 0, 65}]

Formula

a(n) = phi(2^(n+1)-1) - 2^n + 1 = A053287(n+1) - A000225(n). - Amiram Eldar, Jun 09 2024

Extensions

Offset changed to 0, a(0) prepended and name corrected by Amiram Eldar, Jun 09 2024

A092590 a(n) = A065395(A000040(n)); values of commutator of sigma and phi function at prime number arguments.

Original entry on oeis.org

-1, 1, 5, 8, 14, 22, 25, 31, 28, 48, 56, 73, 78, 76, 56, 80, 74, 138, 112, 120, 159, 136, 102, 156, 210, 185, 168, 126, 240, 212, 248, 212, 226, 240, 226, 300, 314, 283, 204, 252, 222, 474, 296, 412, 339, 388, 472, 360, 270, 472, 378, 368, 634, 396, 427, 316, 404, 592, 534, 628, 436, 434, 582, 480, 684, 456, 700, 836
Offset: 1

Views

Author

Labos Elemer, Mar 03 2004

Keywords

Comments

The sequence differs from A065394 since it is not monotonic.

Examples

			a(1) = sigma(phi(2))- phi(sigma(2)) = sigma(1)-phi(3) = 1-2 = -1.
		

Crossrefs

Programs

  • Magma
    [DivisorSigma(1,EulerPhi(p))-EulerPhi(DivisorSigma(1,p)): p in PrimesUpTo(400)]; // Bruno Berselli, Oct 20 2015
  • Mathematica
    Table[DivisorSigma[1, p-1] - EulerPhi[p+1], {p, Prime[Range[100]]}] (* Amiram Eldar, Jun 09 2024 *)

Formula

a(n) = sigma(prime(n)-1) - phi(prime(n)+1) = A008332(n) - A008331(n). - Amiram Eldar, Jun 09 2024

A092591 Exponents m such that 1-A065395(2^m) is a power of 2, where A065395(n) = sigma(phi(n)) - phi(sigma(n)).

Original entry on oeis.org

0, 1, 2, 3, 4, 6, 7, 12, 15, 16, 18, 30, 31, 60, 88, 106, 126, 520, 606, 1278, 2202, 2280, 3216, 4252, 4422, 9688, 9940, 11212, 19936, 21700, 23208, 44496, 86242, 110502, 132048, 216090, 756838, 859432, 1257786, 1398268, 2976220, 3021376, 6972592, 13466916, 20996010, 24036582, 25964950, 30402456, 32582656, 37156666, 42643800, 43112608, 57885160
Offset: 1

Views

Author

Labos Elemer, Mar 03 2004

Keywords

Comments

A000043(k) - 1 is a term for all k >= 1. - Amiram Eldar, Aug 22 2019
Let 2^k = 1-A065395(2^m) = phi(2^(m+1)-1) - 2^m + 2. If k = 0, then phi(2^(m+1)-1) is odd, implying extraneous m = 0. If k = 1, then phi(2^(m+1)-1) = 2^m, meaning that 2^(m+1)-1 is a product of distinct Fermat primes (A019434), which also a term of A050474. The five known Fermat primes give m in {0, 1, 3, 7, 15, 31}. If k >= 2, then phi(2^(m+1)-1) == 2 (mod 4), implying that 2^(m+1)-1 is a prime power, and by Mihăilescu's theorem, 2^(m+1)-1 must be just a prime, that is, m+1 is a term of A000043 and k = m. Hence, unless there exist other Fermat primes, this sequence is the union of {0, 1, 3, 7, 15, 31} and terms of A000043 decreased by 1. - Max Alekseyev, Jun 14 2025

Examples

			At exponents m=1, 3, 7, 15, 31: 1-A065395(2^m)=2.
While at m=2, 4, 6, 12, 16, 18, 30, 60, 88, 106, 126: 1-A065395(2^m)=2^m.
		

Crossrefs

Programs

  • Mathematica
    f[n_] := DivisorSigma[1, EulerPhi[n]] - EulerPhi[DivisorSigma[1, n]]; pow2Q[n_] := n == 2^IntegerExponent[n, 2]; aQ[n_] := pow2Q[1 - f[2^n]]; Select[Range[0, 130], aQ] (* Amiram Eldar, Aug 22 2019 *)
  • PARI
    f(n) = sigma(eulerphi(n)) - eulerphi(sigma(n)); \\ A065395
    ispp2(k) = k == 2^valuation(k,2);
    isok(n) = ispp2(1-f(2^n)); \\ Michel Marcus, Aug 22 2019, Jun 16 2025

Formula

If there are only 5 Fermat primes (A019434), then for n >= 14, a(n) = A000043(n-5) - 1. - Max Alekseyev, Jun 14 2025

Extensions

Name and example edited by Michel Marcus, Aug 22 2019
a(18)-a(19) from Amiram Eldar, Aug 23 2019
a(1)=0 inserted and terms a(20) onward added by Max Alekseyev, Jun 14 2025

A092584 Numbers k such that sigma(phi(k)) == phi(sigma(k)) (mod k), that is, A033632(k)/k is an integer.

Original entry on oeis.org

1, 5, 9, 157, 225, 242, 516, 729, 3872, 13932, 14406, 17672, 18225, 20124, 21780, 29262, 29616, 45996, 65025, 76832, 92778, 95916, 106092, 106308, 114630, 114930, 121872, 125652, 140130, 140625, 145794, 149124, 160986, 179562, 185100, 234876
Offset: 1

Views

Author

Labos Elemer, Mar 01 2004

Keywords

Examples

			Includes but is not identical with A033632.
Below 10^7 only a(2) = 5 and a(4) = 157 give A033632(n)/n nonzero.
		

Crossrefs

Programs

  • Mathematica
    Select[Range[250000], Divisible[DivisorSigma[1, EulerPhi[#]] - EulerPhi[DivisorSigma[1, #]] , #] &]  (* Amiram Eldar, Mar 12 2020 *)
  • PARI
    is(n)=sigma(eulerphi(n))==Mod(eulerphi(sigma(n)),n) \\ Charles R Greathouse IV, Nov 27 2013

A065393 Sigma(phi(m)) - phi(sigma(m)) is increasing at these values of m.

Original entry on oeis.org

3, 5, 7, 11, 13, 17, 19, 29, 31, 37, 41, 53, 61, 73, 95, 97, 109, 127, 143, 157, 181, 209, 241, 287, 313, 323, 337, 377, 403, 407, 421, 473, 527, 533, 541, 589, 601, 661, 713, 731, 757, 779, 899, 1009, 1073, 1147, 1159, 1199, 1271, 1321, 1333, 1349, 1517
Offset: 1

Views

Author

Labos Elemer, Nov 05 2001

Keywords

Comments

First composite number is the 15th term, 95. [Corrected by Jacob Vecht, Jul 28 2020]

Crossrefs

Programs

  • Mathematica
    a = 0; s = 0; Do[s = DivisorSigma[1, EulerPhi[n]] - EulerPhi[DivisorSigma[1, n]]; If[s>a, a = s; Print[n]], {n, 1, 10000}]
    DeleteDuplicates[Table[{m,DivisorSigma[1,EulerPhi[m]]-EulerPhi[DivisorSigma[1,m]]},{m,1600}],GreaterEqual[#1[[2]],#2[[2]]]&][[;;,1]] (* Harvey P. Dale, Aug 02 2023 *)
  • PARI
    { n=r=0; for (m=1, 10^9, x=sigma(eulerphi(m)) - eulerphi(sigma(m)); if (x > r, r=x; write("b065393.txt", n++, " ", m); if (n==500, return)) ) } \\ Harry J. Smith, Oct 18 2009
Showing 1-10 of 12 results. Next