cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 108 results. Next

A353755 a(n) = A062401(n) / gcd(A062401(n), A353752(n)), where A062401(n) = phi(sigma(n)), and A353752(n) = Product_{p^e||n} phi(sigma(p^e)).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 3, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 2, 3, 2, 1, 1, 1, 2, 3, 1, 2, 1, 1, 1, 3, 1, 1, 1, 1, 2, 7, 1, 1, 3, 1, 2, 3, 1, 2, 1, 1, 1, 1, 2, 3, 1, 1, 2, 3, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 1, 3, 1, 2, 3, 1, 2, 3, 1, 3, 2, 1, 2, 3, 2, 1, 1, 3, 1, 1, 1, 3, 1, 1, 4
Offset: 1

Views

Author

Antti Karttunen, May 08 2022

Keywords

Comments

Numerator of fraction A062401(n) / A353752(n).

Crossrefs

Cf. A336547 (positions of 1's), A336548 (positions of terms > 1).
Cf. also A353805.

Programs

Formula

a(n) = A062401(n) / A353754(n) = A062401(n) / gcd(A062401(n), A353752(n)).

A096859 Function A062401(x) = phi(sigma(x)) = f(x) is iterated. Starting with n, a(n) is the count of distinct terms arising in trajectory; a(n)=t(n)+c(n)=t+c, where t=number of transient terms, c=number of recurrent terms (in the terminal cycle).

Original entry on oeis.org

1, 1, 2, 2, 2, 2, 3, 1, 2, 3, 3, 1, 3, 2, 2, 3, 3, 4, 2, 2, 4, 2, 2, 3, 4, 2, 4, 4, 2, 3, 4, 4, 4, 5, 4, 3, 5, 4, 4, 4, 2, 5, 3, 4, 4, 4, 4, 2, 4, 3, 4, 6, 5, 5, 4, 5, 5, 4, 4, 2, 4, 5, 3, 4, 4, 3, 5, 4, 5, 3, 4, 2, 4, 4, 3, 3, 5, 3, 5, 3, 4, 4, 4, 3, 4, 5, 5, 3, 4, 3, 3, 3, 5, 3, 5, 2, 6, 4, 3, 7, 5, 3, 3, 3, 5
Offset: 1

Views

Author

Labos Elemer, Jul 21 2004

Keywords

Examples

			n=255: list={255,144,360,288,[432,480],432,...}, t=transient=4, c=cycle=2, a(255)=t+c=6;
n=244: list={244,180,144,360,288,[432,480],432,...}, t=5, c=2, a(244)=7.
		

Crossrefs

Programs

  • Mathematica
    fs[x_] :=EulerPhi[DivisorSigma[1, x]] itef[x_, len_] :=NestList[fs, x, len] Table[Length[Union[itef[2^w, 20]]], {w, 1, 256}] (* len=20 at n<=256 is suitable *)
  • Scheme
    (define (A096859 n) (let loop ((visited (list n)) (i 1)) (let ((next (A062401 (car visited)))) (cond ((member next visited) i) (else (loop (cons next visited) (+ 1 i))))))) ;; Antti Karttunen, Nov 18 2017

A096865 Function A062401(x) = phi(sigma(x)) is iterated. Starting with n, a(n) is the smallest term arising in trajectory, either in transient or in terminal cycle.

Original entry on oeis.org

1, 2, 2, 4, 2, 4, 4, 8, 9, 4, 4, 12, 4, 8, 8, 16, 4, 16, 8, 12, 16, 12, 8, 16, 16, 12, 16, 16, 8, 16, 16, 32, 16, 16, 16, 36, 16, 16, 16, 16, 12, 32, 12, 16, 16, 16, 16, 48, 36, 48, 16, 32, 16, 32, 16, 32, 32, 16, 16, 48, 16, 32, 48, 64, 16, 48, 32, 36, 32, 48, 16, 72, 36, 36, 48
Offset: 1

Views

Author

Labos Elemer, Jul 21 2004

Keywords

Examples

			n=255: list={255,144,360,288,[432,480],432,...}, a(255)=144 as a transient term;
n=254: list={254,[128],128,...}, a(254)=128, as a fixed point.
		

Crossrefs

Cf. A062401, A062402, A095955, A096859, A096860, A096861 (largest term).
Cf. also A096866.

Programs

  • Mathematica
    fs[x_] :=EulerPhi[DivisorSigma[1, x]] itef[x_, hos_] :=NestList[fs, x, hos] Table[Min[itef[w, 20]], {w, 1, 256}]
  • Scheme
    (define (A096865 n) (let loop ((visited (list n)) (m n)) (let ((next (A062401 (car visited)))) (cond ((member next visited) m) (else (loop (cons next visited) (min m next))))))) ;; Antti Karttunen, Nov 18 2017

A096850 Consider iteration of the function f(x) = phi(sigma(x)) = A062401(x). Sequence gives numbers n such that the trajectory of n returns to n.

Original entry on oeis.org

1, 2, 4, 6, 8, 12, 16, 24, 30, 48, 60, 72, 96, 128, 240, 432, 480, 576, 720, 864, 1200, 1280, 1512, 1536, 1728, 1800, 1860, 2016, 2560, 2880, 3024, 3456, 3840, 6912, 10368, 14080, 15552, 15840, 18144, 27648, 30976, 32768, 34560, 41472, 42240, 48384
Offset: 1

Views

Author

Labos Elemer, Jul 16 2004

Keywords

Examples

			Examples of cycles: {[1], [2], [4, 6], [8], [12], [16, 30, 24], [48, 60], [72, 96], [128]}.
95 => 32 => 36 => 72 => 96 => 72 => ..., therefore 72 and 96 are in the sequence.
		

Crossrefs

Programs

  • Mathematica
    a = {}; f[n_] := EulerPhi[ DivisorSigma[ 1, n]]; Do[ AppendTo[a, NestWhileList[f, n, UnsameQ, All][[ -1]]]; a = Union[a], {n, 10^6}]; Take[ a, 46] (* Robert G. Wilson v, Jul 21 2004 *)
  • PARI
    f(n)=eulerphi(sigma(n))
    is(n)=my(t=f(n),h=f(t));while(t!=h,t=f(t);h=f(f(h));if(t==n, return(1)));t==n \\ Charles R Greathouse IV, Nov 27 2013

Extensions

Edited and extended by Robert G. Wilson v, Jul 21 2004

A096861 Function A062401(x) = phi(sigma(x)) = f(x) is iterated. Starting with n, a(n) is the largest term arising in trajectory.

Original entry on oeis.org

1, 2, 3, 6, 5, 6, 7, 8, 12, 10, 11, 12, 13, 14, 15, 30, 17, 30, 19, 20, 30, 22, 23, 30, 30, 26, 30, 30, 29, 30, 31, 96, 33, 34, 35, 96, 37, 38, 39, 40, 41, 96, 43, 44, 45, 46, 47, 60, 96, 60, 51, 96, 53, 96, 55, 96, 96, 58, 59, 60, 61, 96, 63, 126, 65, 66, 96, 96, 96, 70, 71, 96
Offset: 1

Views

Author

Labos Elemer, Jul 21 2004

Keywords

Examples

			n=255: list={255,144,360,288,[432,480],432,...}, a(255)=480, a recurrent term;
n=247: list={247,96,72,96,...}, a(247)=247, a transient term, here the initial value.
		

Crossrefs

Programs

  • Mathematica
    gf[x_] :=DivisorSigma[1, EulerPhi[x]] itef[x_, len_] :=NestList[fs, x, len] Table[Max[itef[w, 20]], {w, 1, 256}]
  • Scheme
    (define (A096861 n) (let loop ((visited (list n)) (m n)) (let ((next (A062401 (car visited)))) (cond ((member next visited) m) (else (loop (cons next visited) (max m next))))))) ;; Antti Karttunen, Nov 18 2017

A065392 a(n) = A062401(A065391(n)): phi(sigma(m)) peak values for numbers m (listed in A065391) at which those peaks are first reached.

Original entry on oeis.org

1, 2, 6, 8, 12, 30, 36, 72, 126, 180, 360, 432, 660, 930, 1512, 2160, 3300, 3780, 5184, 6552, 11160, 13860, 19800, 23232, 32760, 45360, 47520, 50400, 58080, 61776, 102300, 110160, 137592, 155520, 163296, 196560, 212960, 252000, 272160, 284580
Offset: 1

Views

Author

Labos Elemer, Nov 14 2001

Keywords

Crossrefs

Programs

  • Mathematica
    With[{s = Array[EulerPhi@ DivisorSigma[1, #] &, 10^5]}, Union@ FoldList[Max, s] ] (* Michael De Vlieger, Dec 06 2018 *)
  • PARI
    { n=r=0; for (m=1, 10^9, x=eulerphi(sigma(m)); if (x > r, r=x; write("b065392.txt", n++, " ", x); if (n==100, return)) ) } \\ Harry J. Smith, Oct 18 2009

A096994 Number of transient terms if f(x)=phi(sigma(x))=A062401 is iterated at initial value 2^n. Equilibrium terms are listed in A096852.

Original entry on oeis.org

0, 0, 0, 0, 0, 2, 2, 0, 1, 2, 4, 1, 2, 5, 14, 0, 5, 7, 2, 14, 8, 3, 64, 43, 81, 82, 76, 74, 47, 25, 42, 0
Offset: 0

Views

Author

Labos Elemer, Jul 22 2004

Keywords

Comments

For transient lengths for iterations of A062401(x) or A062402(x) if started at 2^n, A096994(n) + 1 = A096995(n). Corresponding cycle lengths satisfy A096852(n-1) = A096857(n). Behind these observations several relationships stand, e.g., sigma(A062401(x)) = A062402(sigma(x)) or phi(A062402(x)) = A062401(phi(x)).

Examples

			n=0: trajectory = {1,1,..} so a(0)=0;
n=14: transient-length=14, cycle-length=2, a(14)=14, A096852(14)=2; trajectory ={16384, 27000, 23040, 21600, 17280, 15360, 15488, 13824, 9600, 7680, 7200, 12960, 11880, 11520, [10368,14080], 10368, ...}.
Values of a(n) for n > 31, with -1 signifying transient lengths yet unknown after 10^4 iterations of f(x): -1, 7, 51, 70, 23, 39, 11, -1, 37, 107, 30, -1, 145, 25, 21, 36, -1, -1, -1, -1, 31, -1, 452, -1, 449, 447, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 40, -1, -1, -1, -1, -1, -1, -1, 279, -1. - _Michael De Vlieger_, May 15 2017
		

Crossrefs

Programs

  • Mathematica
    With[{nn = 10^3}, Table[Count[Values@ PositionIndex@ #, k_ /; Length@ k == 1] &@ NestList[EulerPhi@ DivisorSigma[1, #] &, 2^n, nn] /. k_ /; k == nn + 1 -> -1, {n, 31}] ] (* Michael De Vlieger, May 15 2017, Version 10 *)

A353756 a(n) = A353752(n) / gcd(A062401(n), A353752(n)), where A062401(n) = phi(sigma(n)), and A353752(n) = Product_{p^e||n} phi(sigma(p^e)).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 6, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1
Offset: 1

Views

Author

Antti Karttunen, May 08 2022

Keywords

Comments

Denominator of fraction A062401(n) / A353752(n).

Crossrefs

Cf. also A353806.

Programs

  • PARI
    A062401(n) = eulerphi(sigma(n));
    A353756(n) = { my(f = factor(n), u=prod(k=1, #f~, A062401(f[k, 1]^f[k, 2]))); (u / gcd(A062401(n), u)); };

Formula

a(n) = A353752(n) / A353754(n) = A353752(n) / gcd(A062401(n), A353752(n)).

A065391 Numbers m such that A062401(m) = phi(sigma(m)) is increasing to a record value, i.e., A062401(m) represents a new peak, so that A062401(m) > A062401(k) for all k < m.

Original entry on oeis.org

1, 2, 4, 8, 9, 16, 32, 36, 64, 100, 144, 256, 324, 400, 576, 900, 1296, 1600, 2304, 2916, 3600, 5184, 8100, 9216, 11664, 14400, 20736, 22500, 25600, 30276, 32400, 41616, 46656, 57600, 69696, 72900, 82944, 90000, 104976, 115600, 121104, 129600
Offset: 1

Views

Author

Labos Elemer, Nov 05 2001

Keywords

Comments

The terms > 2 are exact powers and except for 2, 8 and 32 all the terms seem to be squares.
Indices of records in A062401. - Michael De Vlieger, Dec 06 2018

Examples

			Initial segment of A062401: {1, 2, 2, 6, 2, 4, 4, 8, 12, 6, 4, 12, 6, 8, 8, 30, 6, ...}. The peak values (those exceeding all previous ones) are 1, 2, 6, 8, 12, 30, reached at positions 1, 2, 4, 8, 9, 16, respectively.
		

Crossrefs

Programs

  • Mathematica
    a = 0; s = 0; Do[s = EulerPhi[DivisorSigma[1, n]]; If[s > a, a = s; Print[n]], {n, 1, 10^6}]
    (* Second program: *)
    With[{s = Array[EulerPhi@ DivisorSigma[1, #] &, 2*10^5]}, Map[FirstPosition[s, #][[1]] &, Union@ FoldList[Max, s]]] (* Michael De Vlieger, Dec 06 2018 *)
    DeleteDuplicates[Table[{n,EulerPhi[DivisorSigma[1,n]]},{n,150000}],GreaterEqual[ #1[[2]],#2[[2]]]&] [[;;,1]] (* Harvey P. Dale, May 12 2023 *)
  • PARI
    { n=r=0; for (m=1, 10^9, x=eulerphi(sigma(m)); if (x > r, r=x; write("b065391.txt", n++, " ", m); if (n==100, return)) ) } \\ Harry J. Smith, Oct 18 2009

A096853 a(n) = A062401(2^n-1).

Original entry on oeis.org

1, 2, 4, 8, 16, 48, 64, 144, 288, 512, 576, 2304, 4096, 10240, 18432, 36288, 65536, 184320, 262144, 552960, 718848, 1492992, 2822400, 9123840, 13418496, 44695552, 68762880, 106168320, 109486080, 580386816, 1073741824, 2155507200, 2366668800, 6920601600, 12081954816
Offset: 1

Views

Author

Labos Elemer, Jul 19 2004

Keywords

Crossrefs

Programs

  • Mathematica
    Table[ EulerPhi[ DivisorSigma[1, 2^n - 1]], {n, 33}]

Formula

a(n) = A000010(A000203(A000225(n))). - Michel Marcus, Dec 19 2013
a(n) = A000010(A075708(n)). - Amiram Eldar, Jun 04 2024

Extensions

Edited and extended by Robert G. Wilson v, Jul 23 2004
a(33)-a(35) from Amiram Eldar, Jun 04 2024
Showing 1-10 of 108 results. Next