cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A065391 Numbers m such that A062401(m) = phi(sigma(m)) is increasing to a record value, i.e., A062401(m) represents a new peak, so that A062401(m) > A062401(k) for all k < m.

Original entry on oeis.org

1, 2, 4, 8, 9, 16, 32, 36, 64, 100, 144, 256, 324, 400, 576, 900, 1296, 1600, 2304, 2916, 3600, 5184, 8100, 9216, 11664, 14400, 20736, 22500, 25600, 30276, 32400, 41616, 46656, 57600, 69696, 72900, 82944, 90000, 104976, 115600, 121104, 129600
Offset: 1

Views

Author

Labos Elemer, Nov 05 2001

Keywords

Comments

The terms > 2 are exact powers and except for 2, 8 and 32 all the terms seem to be squares.
Indices of records in A062401. - Michael De Vlieger, Dec 06 2018

Examples

			Initial segment of A062401: {1, 2, 2, 6, 2, 4, 4, 8, 12, 6, 4, 12, 6, 8, 8, 30, 6, ...}. The peak values (those exceeding all previous ones) are 1, 2, 6, 8, 12, 30, reached at positions 1, 2, 4, 8, 9, 16, respectively.
		

Crossrefs

Programs

  • Mathematica
    a = 0; s = 0; Do[s = EulerPhi[DivisorSigma[1, n]]; If[s > a, a = s; Print[n]], {n, 1, 10^6}]
    (* Second program: *)
    With[{s = Array[EulerPhi@ DivisorSigma[1, #] &, 2*10^5]}, Map[FirstPosition[s, #][[1]] &, Union@ FoldList[Max, s]]] (* Michael De Vlieger, Dec 06 2018 *)
    DeleteDuplicates[Table[{n,EulerPhi[DivisorSigma[1,n]]},{n,150000}],GreaterEqual[ #1[[2]],#2[[2]]]&] [[;;,1]] (* Harvey P. Dale, May 12 2023 *)
  • PARI
    { n=r=0; for (m=1, 10^9, x=eulerphi(sigma(m)); if (x > r, r=x; write("b065391.txt", n++, " ", m); if (n==100, return)) ) } \\ Harry J. Smith, Oct 18 2009

A385729 Number of nonnegative values s < n such that (-s) == (-s)^s == s^s (mod n).

Original entry on oeis.org

1, 1, 1, 0, 1, 2, 1, 0, 1, 2, 2, 1, 3, 3, 1, 0, 1, 2, 2, 1, 3, 3, 1, 1, 1, 4, 1, 1, 2, 4, 1, 0, 2, 2, 4, 1, 2, 3, 3, 1, 1, 4, 3, 1, 1, 3, 1, 1, 1, 2, 1, 2, 2, 2, 3, 2, 3, 3, 2, 3, 2, 3, 1, 0, 3, 5, 2, 1, 2, 6, 3, 1, 1, 4, 3, 1, 3, 4, 2, 1, 1, 3, 2, 3, 3, 4, 1, 1, 1, 4, 4, 2, 3, 3, 2, 1, 1, 2, 3, 1
Offset: 1

Views

Author

Juri-Stepan Gerasimov, Jul 08 2025

Keywords

Crossrefs

Programs

A065389 Numbers m such that sigma(phi(m)) sets a new record, i.e., sigma(phi(m)) > sigma(phi(k)) for all k < m numbers.

Original entry on oeis.org

1, 3, 5, 7, 11, 13, 17, 19, 25, 29, 31, 37, 43, 53, 61, 73, 97, 109, 127, 143, 151, 157, 181, 211, 241, 313, 331, 337, 397, 403, 421, 527, 541, 601, 631, 661, 757, 779, 899, 1009, 1147, 1201, 1321, 1333, 1517, 1621, 1763, 1801, 2017, 2161, 2341, 2501, 2521
Offset: 1

Views

Author

Labos Elemer, Nov 05 2001

Keywords

Comments

Numbers m at which A000203(A000010(m)) = A062402(m) reaches a new maximal value.

Examples

			A062402 begins {1, 1, 3, 3, 7, 3, 12, 7, 12, 7, 18, 7, 28, 12, 15, 15, 31, 12, 39, 15, 28, 18, 36, 15, 42}. New peaks are reached at positions 3, 5, 7, 11, 13, 17, 19, 25. These peak values are 3, 7, 12, 18, 28, 31, 39, 42, respectively.
		

Crossrefs

Programs

  • Mathematica
    a=0; s=0; Do[s=DivisorSigma[1, EulerPhi[n]]; If[s>a, a=s; Print[n]], {n, 1, 10000}];
    DeleteDuplicates[Table[{n,DivisorSigma[1,EulerPhi[n]]},{n,2600}],GreaterEqual[#1[[2]],#2[[2]]]&][[;;,1]] (* Harvey P. Dale, Jul 20 2023 *)
  • PARI
    { n=r=0; for (m=1, 10^9, x=sigma(eulerphi(m)); if (x > r, r=x; write("b065389.txt", n++, " ", m); if (n==500, return)) ) } \\ Harry J. Smith, Oct 18 2009

A065390 Peak values reached by A062402 at the sites listed in A065389.

Original entry on oeis.org

1, 3, 7, 12, 18, 28, 31, 39, 42, 56, 72, 91, 96, 98, 168, 195, 252, 280, 312, 360, 372, 392, 546, 576, 744, 840, 864, 992, 1092, 1170, 1344, 1512, 1680, 1860, 1872, 2016, 2240, 2418, 2880, 3224, 3600, 3844, 4320, 4368, 4914, 5082, 5952, 6045, 6552, 7440
Offset: 1

Views

Author

Labos Elemer, Nov 05 2001

Keywords

Crossrefs

Programs

  • Mathematica
    a=0; s=0; Do[s=DivisorSigma[1, EulerPhi[n]]; If[s>a, a=s; Print[s]], {n, 1, 10000}]
    (* Second program: *)
    Union@ FoldList[Max, Array[DivisorSigma[1, EulerPhi[#]] &, 2200]] (* Michael De Vlieger, Jun 19 2018 *)
  • PARI
    { n=r=0; for (m=1, 10^9, x=sigma(eulerphi(m)); if (x > r, r=x; write("b065390.txt", n++, " ", x); if (n==500, return)) ) } \\ Harry J. Smith, Oct 18 2009

Formula

a(n) = A062402(A065389(n)). - Amiram Eldar, Mar 22 2025
Showing 1-4 of 4 results.