A033820 Triangle read by rows: T(k,j) = ((2*j+1)/(k+1))*binomial(2*j,j)*binomial(2*k-2*j,k-j).
1, 1, 3, 2, 4, 10, 5, 9, 15, 35, 14, 24, 36, 56, 126, 42, 70, 100, 140, 210, 462, 132, 216, 300, 400, 540, 792, 1716, 429, 693, 945, 1225, 1575, 2079, 3003, 6435, 1430, 2288, 3080, 3920, 4900, 6160, 8008, 11440, 24310, 4862, 7722, 10296, 12936, 15876, 19404
Offset: 0
Examples
{1}, {1, 3}, {2, 4, 10}, {5, 9, 15, 35}, {14, 24, 36, 56, 126}, {42, 70, 100, 140, 210, 462}, {132, 216, 300, 400, 540, 792, 1716}, ...
Links
- Alexander Burstein, Enumeration of words with forbidden patterns, Ph.D. thesis, University of Pennsylvania, 1998.
- Ira Gessel, Super ballot numbers, J. Symbolic Computation 14 (1992), 179-194.
- Walter Shur, Two Game-Set Inequalities, J. Integer Seqs., Vol. 6, 2003.
Formula
T(k,0) = binomial(2*k, k)/(k+1), the k-th Catalan number; T(k,k) = binomial(2*(k+1),k+1)/2, half the (k+1)-st central binomial coefficient sum of entries in row k (over j) = 2^{2*(k-1)}
T(k,j) = sum(C(k-i)D(i), i=0..j), C(i) = binomial(2*i,i)/(i+1), D(i) = binomial(2*i,i).
G.f.: 2/(1-4*x*y+sqrt((1-4*x)*(1-4*x*y))). - Vladeta Jovovic, Dec 14 2003
Extensions
More terms from Vladeta Jovovic, Dec 10 2003
Comments