cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A033849 Numbers whose prime factors are 3 and 5.

Original entry on oeis.org

15, 45, 75, 135, 225, 375, 405, 675, 1125, 1215, 1875, 2025, 3375, 3645, 5625, 6075, 9375, 10125, 10935, 16875, 18225, 28125, 30375, 32805, 46875, 50625, 54675, 84375, 91125, 98415, 140625, 151875, 164025, 234375, 253125, 273375, 295245
Offset: 1

Views

Author

Keywords

Comments

Numbers k such that phi(k) = (8/15)*k. - Benoit Cloitre, Apr 19 2002
Subsequence of A143202. - Reinhard Zumkeller, Sep 13 2011

Crossrefs

Programs

  • Haskell
    import Data.Set (singleton, deleteFindMin, insert)
    a033849 n = a033849_list !! (n-1)
    a033849_list = f (singleton (3*5)) where
       f s = m : f (insert (3*m) $ insert (5*m) s') where
         (m,s') = deleteFindMin s
    -- Reinhard Zumkeller, Sep 13 2011
    
  • Mathematica
    Sort[Flatten[Table[Table[3^j*5^k, {j, 1, 10}], {k, 1, 10}]]] (* Geoffrey Critzer, Dec 07 2014 *)
    Select[Range[300000],FactorInteger[#][[All,1]]=={3,5}&] (* Harvey P. Dale, Oct 19 2022 *)
  • Python
    from sympy import integer_log
    def A033849(n):
        def bisection(f,kmin=0,kmax=1):
            while f(kmax) > kmax: kmax <<= 1
            while kmax-kmin > 1:
                kmid = kmax+kmin>>1
                if f(kmid) <= kmid:
                    kmax = kmid
                else:
                    kmin = kmid
            return kmax
        def f(x): return n+x-sum(integer_log(x//5**i,3)[0]+1 for i in range(integer_log(x,5)[0]+1))
        return 15*bisection(f,n,n) # Chai Wah Wu, Oct 22 2024

Formula

From Reinhard Zumkeller, Sep 13 2011: (Start)
A143201(a(n)) = 3.
a(n) = 15*A003593(n). (End)
Sum_{n>=1} 1/a(n) = 1/8. - Amiram Eldar, Dec 22 2020

Extensions

Offset and typo in data fixed by Reinhard Zumkeller, Sep 13 2011