A033849 Numbers whose prime factors are 3 and 5.
15, 45, 75, 135, 225, 375, 405, 675, 1125, 1215, 1875, 2025, 3375, 3645, 5625, 6075, 9375, 10125, 10935, 16875, 18225, 28125, 30375, 32805, 46875, 50625, 54675, 84375, 91125, 98415, 140625, 151875, 164025, 234375, 253125, 273375, 295245
Offset: 1
Keywords
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 1..10000
Crossrefs
Programs
-
Haskell
import Data.Set (singleton, deleteFindMin, insert) a033849 n = a033849_list !! (n-1) a033849_list = f (singleton (3*5)) where f s = m : f (insert (3*m) $ insert (5*m) s') where (m,s') = deleteFindMin s -- Reinhard Zumkeller, Sep 13 2011
-
Mathematica
Sort[Flatten[Table[Table[3^j*5^k, {j, 1, 10}], {k, 1, 10}]]] (* Geoffrey Critzer, Dec 07 2014 *) Select[Range[300000],FactorInteger[#][[All,1]]=={3,5}&] (* Harvey P. Dale, Oct 19 2022 *)
-
Python
from sympy import integer_log def A033849(n): def bisection(f,kmin=0,kmax=1): while f(kmax) > kmax: kmax <<= 1 while kmax-kmin > 1: kmid = kmax+kmin>>1 if f(kmid) <= kmid: kmax = kmid else: kmin = kmid return kmax def f(x): return n+x-sum(integer_log(x//5**i,3)[0]+1 for i in range(integer_log(x,5)[0]+1)) return 15*bisection(f,n,n) # Chai Wah Wu, Oct 22 2024
Formula
From Reinhard Zumkeller, Sep 13 2011: (Start)
A143201(a(n)) = 3.
a(n) = 15*A003593(n). (End)
Sum_{n>=1} 1/a(n) = 1/8. - Amiram Eldar, Dec 22 2020
Extensions
Offset and typo in data fixed by Reinhard Zumkeller, Sep 13 2011
Comments