A033879 Deficiency of n, or 2n - (sum of divisors of n).
1, 1, 2, 1, 4, 0, 6, 1, 5, 2, 10, -4, 12, 4, 6, 1, 16, -3, 18, -2, 10, 8, 22, -12, 19, 10, 14, 0, 28, -12, 30, 1, 18, 14, 22, -19, 36, 16, 22, -10, 40, -12, 42, 4, 12, 20, 46, -28, 41, 7, 30, 6, 52, -12, 38, -8, 34, 26, 58, -48, 60, 28, 22, 1, 46, -12, 66, 10, 42, -4, 70, -51
Offset: 1
Examples
For n = 10 the divisors of 10 are 1, 2, 5, 10, so the deficiency of 10 is 10 minus the sum of its proper divisors or simply 10 - 5 - 2 - 1 = 2. - _Omar E. Pol_, Dec 27 2013
References
- Richard K. Guy, Unsolved Problems in Number Theory, 3rd Edition, Springer, 2004, Section B2, pp. 74-84.
- James J. Tattersall, Elementary Number Theory in Nine Chapters, Cambridge University Press, 1999, page 147.
Links
- N. J. A. Sloane, Table of n, a(n) for n = 1..25000 [First 2000 terms from T. D. Noe, terms up to 16384 from Antti Karttunen]
- Nichole Davis, Dominic Klyve and Nicole Kraght, On the difference between an integer and the sum of its proper divisors, Involve, Vol. 6 (2013), No. 4, 493-504; DOI: 10.2140/involve.2013.6.493.
- Jose A. B. Dris, Conditions Equivalent to the Descartes-Frenicle-Sorli Conjecture on Odd Perfect Numbers, arXiv preprint arXiv:1610.01868 [math.NT], 2016.
- Jose Arnaldo B. Dris, Analysis of the Ratio D(n)/n, arXiv:1703.09077 [math.NT], 2017.
- Jose Arnaldo Bebita Dris, On a curious biconditional involving the divisors of odd perfect numbers, Notes on Number Theory and Discrete Mathematics, 23(4) (2017), 1-13.
- Jose Arnaldo Bebita Dris and Immanuel Tobias San Diego, Some Modular Considerations Regarding Odd Perfect Numbers, arXiv:2002.12139 [math.NT], 2020.
- Jose Arnaldo Bebita Dris and Doli-Jane Uvales Tejada, Conditions equivalent to the Descartes-Frenicle-Sorli Conjecture on odd perfect numbers - Part II, Notes on Number Theory and Discrete Mathematics (2018) Vol. 24, No. 3, 62-67.
- Jose Arnaldo Bebita Dris and Doli-Jane Uvales Tejada, A note on the OEIS sequence A228059, Notes on Number Theory and Discrete Mathematics (2019) Vol. 25, No. 1, 199-205.
- Index entries for sequences related to sigma(n).
Crossrefs
Programs
-
Maple
with(numtheory): A033879:=n->2*n-sigma(n): seq(A033879(n), n=1..100);
-
Mathematica
Table[2n-DivisorSigma[1,n],{n,80}] (* Harvey P. Dale, Oct 24 2011 *)
-
PARI
a(n)=2*n-sigma(n) \\ Charles R Greathouse IV, Oct 13 2016
-
Python
from sympy import divisor_sigma def A033879(n): return (n<<1)-divisor_sigma(n) # Chai Wah Wu, Apr 13 2024
-
SageMath
[2*n-sigma(n, 1) for n in range(1, 73)] # Stefano Spezia, Jul 18 2025
Formula
a(n) = -A033880(n).
a(n) = n - A001065(n). - Omar E. Pol, Dec 27 2013
G.f.: 2*x/(1 - x)^2 - Sum_{k>=1} k*x^k/(1 - x^k). - Ilya Gutkovskiy, Jan 24 2017
From Antti Karttunen, Dec 29 2017: (Start)
a(n) = Sum_{d|n} A083254(d).
(End)
From Antti Karttunen, Jun 03 2019: (Start)
Sequence can be represented in arbitrarily many ways as a difference of the form (n - f(n)) - (g(n) - n), where f and g are any two sequences whose sum f(n)+g(n) = sigma(n). Here are few examples:
Sum_{k=1..n} a(k) ~ c * n^2, where c = 1 - Pi^2/12 = 0.177532... . - Amiram Eldar, Dec 07 2023
Extensions
Definition corrected by N. J. A. Sloane, Jul 04 2005
Comments