A033880 Abundance of n, or (sum of divisors of n) - 2n.
-1, -1, -2, -1, -4, 0, -6, -1, -5, -2, -10, 4, -12, -4, -6, -1, -16, 3, -18, 2, -10, -8, -22, 12, -19, -10, -14, 0, -28, 12, -30, -1, -18, -14, -22, 19, -36, -16, -22, 10, -40, 12, -42, -4, -12, -20, -46, 28, -41, -7, -30, -6, -52, 12, -38, 8, -34, -26, -58, 48, -60, -28, -22
Offset: 1
Examples
For n = 10 the divisors of 10 are 1, 2, 5, 10. The sum of proper divisors of 10 minus 10 is 1 + 2 + 5 - 10 = -2, so the abundance of 10 is a(10) = -2. - _Omar E. Pol_, Dec 27 2013
References
- Richard K. Guy, "Almost Perfect, Quasi-Perfect, Pseudoperfect, Harmonic, Weird, Multiperfect and Hyperperfect Numbers." Section B2 in Unsolved Problems in Number Theory, 2nd ed., New York: Springer-Verlag, pp. 45-53, 1994.
- James J. Tattersall, Elementary Number Theory in Nine Chapters, Cambridge University Press, 1999, page 147.
Links
- J. G. Wurtzel, Table of n, a(n) for n = 1..10000 [This replaces an earlier b-file computed by T. D. Noe]
- Nichole Davis, Dominic Klyve and Nicole Kraght, On the difference between an integer and the sum of its proper divisors, Involve, Vol. 6 (2013), No. 4, 493-504; DOI: 10.2140/involve.2013.6.493.
- Marc Deléglise, Bounds for the density of abundant integers, Experiment. Math. Volume 7, Issue 2 (1998), 137-143.
- Peter Hagis Jr. and Graeme L. Cohen, Some Results Concerning Quasiperfect Numbers, J. Austral. Math. Soc. Ser. A 33, 275-286, 1982.
- Eric Weisstein's World of Mathematics, Abundance.
- Eric Weisstein's World of Mathematics, Abundancy.
- Eric Weisstein's World of Mathematics, Quasiperfect Number.
Crossrefs
Programs
-
Magma
[SumOfDivisors(n)-2*n: n in [1..100]]; // Vincenzo Librandi, Oct 11 2015
-
Maple
with(numtheory); n->sigma(n) - 2*n;
-
Mathematica
Array[Total[Divisors[#]]-2#&,70] (* Harvey P. Dale, Sep 16 2011 *) Table[DivisorSigma[1, n] - 2*n, {n, 1, 70}] (* Amiram Eldar, Jun 09 2022 *)
-
PARI
a(n)=sigma(n)-2*n \\ Charles R Greathouse IV, Nov 20 2012
-
Python
from sympy import divisor_sigma def A033880(n): return divisor_sigma(n)-(n<<1) # Chai Wah Wu, Apr 12 2024
-
SageMath
[sigma(n, 1)-2*n for n in range(1, 64)] # Stefano Spezia, Jul 18 2025
Formula
a(n) = A001065(n) - n. - Omar E. Pol, Dec 27 2013
Sum_{k=1..n} a(k) ~ c * n^2, where c = Pi^2/12 - 1 = -0.1775329665... . - Amiram Eldar, Apr 06 2024
Extensions
Definition corrected Jul 04 2005
Comments