A003001 Smallest number of multiplicative persistence n.
0, 10, 25, 39, 77, 679, 6788, 68889, 2677889, 26888999, 3778888999, 277777788888899
Offset: 0
Examples
77 -> 49 -> 36 -> 18 -> 8 has persistence 4.
References
- Alex Bellos, Here's Looking at Euclid: A Surprising Excursion Through the Astonishing World of Math, Free Press, 2010, page 176.
- M. Gardner, Fractal Music, Hypercards and More, Freeman, NY, 1991, pp. 170, 186.
- R. K. Guy, Unsolved Problems in Number Theory, Springer, 1st edition, 1981. See section F25.
- C. A. Pickover, Wonders of Numbers, "Persistence", Chapter 28, Oxford University Press NY 2001.
- Clifford A. Pickover, A Passion for Mathematics, Wiley, 2005; see p. 66.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- James J. Tattersall, Elementary Number Theory in Nine Chapters, Cambridge University Press, 1999, page 35.
- David Wells, The Penguin Dictionary of Curious and Interesting Numbers. Penguin Books, NY, 1986, Revised edition 1987. See p. 78.
Links
- Edson de Faria and Charles Tresser, On Sloane's persistence problem, arXiv preprint arXiv:1307.1188 [math.DS], 2013.
- Edson de Faria and Charles Tresser, On Sloane's persistence problem, Experimental Math., 23 (No. 4, 2014), 363-382.
- Mark R. Diamond, Multiplicative persistence base 10: some new null results, 2011.
- Shyam Sunder Gupta, Digital Root Wonders, Exploring the Beauty of Fascinating Numbers, Springer (2025) Ch. 1, 1-28.
- Brady Haran and Matt Parker, What's special about 277777788888899?, Numberphile video, 2019.
- T. Lamont-Smith, Multiplicative Persistence and Absolute Multiplicative Persistence, J. Int. Seq., Vol. 24 (2021), Article 21.6.7.
- Kevin McElwee, An algorithm for multiplicative persistence research, Jul 13 2019.
- S. Perez and R. Styer, Persistence: A Digit Problem.
- W. Schneider, The Persistence of a Number.
- N. J. A. Sloane, The persistence of a number, J. Recreational Math., 6 (1973), 97-98.
- Eric Weisstein's World of Mathematics, Multiplicative Persistence.
- Wikipedia, Persistence of a number.
- Susan Worst, Multiplicative persistence of base four numbers. [Scanned copy of manuscript and correspondence, May 1980]
Crossrefs
Programs
-
Mathematica
lst = {}; n = 0; Do[While[True, k = n; c = 0; While[k > 9, k = Times @@ IntegerDigits[k]; c++]; If[c == l, Break[]]; n++]; AppendTo[lst, n], {l, 0, 7}]; lst (* Arkadiusz Wesolowski, May 01 2012 *)
-
PARI
persistence(x)={my(y=digits(x),c=0);while(#y>1,y=digits(vecprod(y));c++);return(c)} firstTermsA003001(U)={my(ans=vector(U),k=(U>1),z);while(k+1<=U,if(persistence(z)==k,ans[k++]=z);z++);return(ans)} \\ Finds the first U terms (is slow); R. J. Cano, Sep 11 2016
Comments