A033948 Numbers that have a primitive root (the multiplicative group modulo n is cyclic).
1, 2, 3, 4, 5, 6, 7, 9, 10, 11, 13, 14, 17, 18, 19, 22, 23, 25, 26, 27, 29, 31, 34, 37, 38, 41, 43, 46, 47, 49, 50, 53, 54, 58, 59, 61, 62, 67, 71, 73, 74, 79, 81, 82, 83, 86, 89, 94, 97, 98, 101, 103, 106, 107, 109, 113, 118, 121, 122, 125, 127, 131, 134, 137, 139
Offset: 1
Keywords
Examples
Gaussian product for n=9 is 1*2*4*5*7*8=2240. Since 2240==-1(mod 9), then 9 is in the sequence. - _Vladimir Shevelev_, Jan 11 2011
References
- G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers, Fifth ed., Clarendon Press, Oxford, 2003, Theorem 129, p. 102.
- I. Niven and H. S. Zuckerman, An Introduction to the Theory of Numbers, 4th edition, page 62, Theorem 2.25.
- B. L. van der Waerden, Modern Algebra, 2nd. ed., Ungar, NY, Vol. I, 1948.
Links
- T. D. Noe, Table of n, a(n) for n = 1..10000
- Anonymous, Notes on Number Theory:Primitive Roots [broken link]
- Joerg Arndt, Matters Computational (The Fxtbook), p. 778.
- L. J. Corwin, Irreducible polynomials over the integers which factor mod p for every p, Unpublished Bell Labs Memo, Sep 07 1967 [Annotated scanned copy]
- Math Reference Project, Primitive Root
- Jorma K. Merikoski, Pentti Haukkanen, and Timo Tossavainen, The congruence x^n = -a^n (mod m): Solvability and related OEIS sequences, Notes. Num. Theor. Disc. Math. (2024) Vol. 30, No. 3, 516-529. See p. 519.
- Eric Weisstein's World of Mathematics, Primitive Root
- Eric Weisstein's World of Mathematics, Modulo Multiplication Group
- Wolfram Research, Prime Roots
Crossrefs
Programs
-
Maple
m := proc(n) local k, r; r := 1; if n = 2 then return false fi; for k from 1 to n do if igcd(n,k) = 1 then r := modp(r*k,n) fi od; r end: select(n -> m(n) <> 1, [$1..139]); # Peter Luschny, May 25 2017
-
Mathematica
Join[{1}, Select[ Range[140], IntegerQ[ PrimitiveRoot[#]] &]] (* Jean-François Alcover, Sep 27 2011 *) Select[Range[139], EulerPhi[#] == CarmichaelLambda[#] &] (* T. D. Noe, Jun 04 2013 *) result = {}; Do[count = 0; Do[If[Mod[j^2, n] == 1, count++], {j, 2, n - 2}]; If[count == 0, AppendTo[result, n]], {n, 1, 200}]; result (* Richard R. Forberg, Mar 26 2016 *) result = {}; Do[count = 0; Do[ r = Sqrt[n*j + 1]; If[IntegerQ[r], count++], {j, 0, n}]; If[count == 2, AppendTo[result, n]], {n, 0, 200}]; result (* missing{1,2} Richard R. Forberg, Mar 26 2016 *)
-
PARI
is(n)=if(n%2, isprimepower(n) || n==1, n==2 || n==4 || (isprimepower(n/2,&n) && n>2)) \\ Charles R Greathouse IV, Apr 16 2015
-
Python
from sympy import primepi, integer_nthroot def A033948(n): def bisection(f,kmin=0,kmax=1): while f(kmax) > kmax: kmax <<= 1 kmin = kmax >> 1 while kmax-kmin > 1: kmid = kmax+kmin>>1 if f(kmid) <= kmid: kmax = kmid else: kmin = kmid return kmax def f(x): return int(n-1+x-(x>=2)-(x>=4)-sum(primepi(integer_nthroot(x,k)[0])-1 for k in range(1,x.bit_length()))-sum(primepi(integer_nthroot(x>>1,k)[0])-1 for k in range(1,x.bit_length()-1))) return bisection(f,n,n) # Chai Wah Wu, Feb 24 2025
Comments