cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A033992 Numbers that are divisible by exactly three different primes.

Original entry on oeis.org

30, 42, 60, 66, 70, 78, 84, 90, 102, 105, 110, 114, 120, 126, 130, 132, 138, 140, 150, 154, 156, 165, 168, 170, 174, 180, 182, 186, 190, 195, 198, 204, 220, 222, 228, 230, 231, 234, 238, 240, 246, 252, 255, 258, 260, 264, 266, 270, 273, 276, 280, 282, 285, 286
Offset: 1

Views

Author

Keywords

Comments

This sequence and A000977 are identical through their first 32 terms, but A000977(33) = 210. [Comment edited by Jon E. Schoenfield, Dec 30 2014]

Examples

			220 = 2*2*5*11 is here but 210 = 2*3*5*7 is not; compare A000977.
		

Crossrefs

A225228 is a subsequence.
Row 3 of A125666.

Programs

  • Haskell
    a033992 n = a033992_list !! (n-1)
    a033992_list = filter ((== 3) . a001221) [1..]
    -- Reinhard Zumkeller, May 03 2013
    
  • Maple
    A033992 := proc(n)
    if (nops(numtheory[factorset](n)) = 3) then
       RETURN(n)
    fi: end:  seq(A033992(n), n=1..500); # Jani Melik, Feb 24 2011
  • Mathematica
    Select[Range[300],PrimeNu[#]==3&] (* Harvey P. Dale, May 01 2013 *)
  • PARI
    is(n)=omega(n)==3 \\ Charles R Greathouse IV, Apr 28 2015
    
  • PARI
    A246655(lim)=my(v=List(primes([2,lim\=1]))); for(e=2,logint(lim,2), forprime(p=2,sqrtnint(lim,e), listput(v,p^e))); Set(v)
    list(lim,pr=3)=if(pr==1, return(A246655(lim))); my(v=List(),pr1=pr-1,mx=prod(i=1,pr1,prime(i))); forprime(p=prime(pr),lim\mx, my(u=list(lim\p,pr1)); for(i=1,#u,listput(v,p*u[i]))); Set(v) \\ Charles R Greathouse IV, Feb 03 2023

Formula

omega(a(n)) = A001221(a(n)) = 3. - Jonathan Vos Post, Sep 20 2005
a(n) ~ 2n log n / (log log n)^2. - Charles R Greathouse IV, Jul 28 2016