cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A034001 One third of triple factorial numbers.

Original entry on oeis.org

1, 6, 54, 648, 9720, 174960, 3674160, 88179840, 2380855680, 71425670400, 2357047123200, 84853696435200, 3309294160972800, 138990354760857600, 6254565964238592000, 300219166283452416000, 15311177480456073216000
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • GAP
    List([1..20],n->3^(n-1)*Factorial(n)); # Muniru A Asiru, Jul 28 2018
    
  • Magma
    [3^(n-1)*Factorial(n): n in [1..20]]; // G. C. Greubel, Aug 15 2019
    
  • Maple
    G(x):=(1-3*x)^(n-3): f[0]:=G(x): for n from 1 to 29 do f[n]:=diff(f[n-1],x) od:x:=0:seq(f[n],n=0..16); # Zerinvary Lajos, Apr 04 2009
  • Mathematica
    terms = 17;
    CoefficientList[1/(1-3x)^2 + O[x]^terms, x] Range[0, terms-1]! (* Jean-François Alcover, Jul 28 2018 *)
    Table[3^(n-1)*n!, {n,20}] (* G. C. Greubel, Aug 15 2019 *)
  • PARI
    vector(20, n, 3^(n-1)*n!) \\ G. C. Greubel, Aug 15 2019
    
  • Sage
    [3^(n-1)*factorial(n) for n in (1..20)] # G. C. Greubel, Aug 15 2019

Formula

3*a(n) = (3*n)!!! = Product_{j=1..n} 3*j = 3^n*n!.
E.g.f.: (-1 + 1/(1-3*x))/3.
E.g.f.: 1/(1-3*x)^2. - Paul Barry, Sep 14 2004. For offset 0. - Wolfdieter Lang, Apr 06 2017
D-finite with recurrence a(n) - 3*n*a(n-1) = 0. - R. J. Mathar, Dec 02 2012
From Amiram Eldar, Jan 08 2022: (Start)
Sum_{n>=1} 1/a(n) = 3*(exp(1/3)-1).
Sum_{n>=1} (-1)^(n+1)/a(n) = 3*(1-exp(-1/3)). (End)