cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A038373 Number of n-step self-avoiding paths on quadrant grid starting at quadrant origin.

Original entry on oeis.org

1, 2, 4, 10, 24, 60, 146, 366, 912, 2302, 5800, 14722, 37368, 95304, 243168, 622518, 1594622, 4094768, 10521384, 27085436, 69768478, 179982688, 464564220, 1200563864, 3104192722, 8034256412, 20803994184, 53915334890, 139785953076, 362681515714, 941361260956, 2444866458524, 6351963691964
Offset: 0

Views

Author

Keywords

Crossrefs

Formula

a(n) = 2 * A046170(n) for n >= 1. - Siqi Wang, Jul 15 2022

Extensions

a(25)-a(32) from Bert Dobbelaere, Jan 05 2019

A333651 Triangle T(n,k), n >= 2, 0 <= k <= floor(n^2/2)-2, read by rows, where T(n,k) is the number of 2*(k+2)-cycles in the n X n grid graph which pass through NW corner (0,0).

Original entry on oeis.org

1, 1, 2, 4, 1, 2, 6, 18, 40, 24, 6, 1, 2, 6, 20, 72, 248, 698, 1100, 1096, 662, 206, 1, 2, 6, 20, 74, 298, 1228, 4762, 15984, 40026, 75524, 109150, 121130, 99032, 51964, 11996, 1072, 1, 2, 6, 20, 74, 300, 1300, 5844, 26148, 110942, 427388, 1393796, 3790524, 8648638, 16727776, 27529284, 38120312, 43012614, 37385280, 23166526, 9496426, 2286972, 242764
Offset: 2

Views

Author

Seiichi Manyama, Apr 01 2020

Keywords

Examples

			T(3,0) = 1;
   +--*
   |  |
   *--*
T(3,1) = 2;
   +--*--*   +--*
   |     |   |  |
   *--*--*   *  *
             |  |
             *--*
T(3,2) = 4;
   +--*--*   +--*--*   +--*--*   +--*
   |     |   |     |   |     |   |  |
   *     *   *  *--*   *--*  *   *  *--*
   |     |   |  |         |  |   |     |
   *--*--*   *--*         *--*   *--*--*
Triangle starts:
===================================================
n\k| 0  1  2   3   4    5     6 ...     10 ...  16
---|-----------------------------------------------
2  | 1;
3  | 1, 2, 4;
4  | 1, 2, 6, 18, 40,  24,    6;
5  | 1, 2, 6, 20, 72, 248,  698, ... , 206;
6  | 1, 2, 6, 20, 74, 298, 1228, .......... , 1072;
7  | 1, 2, 6, 20, 74, 300, 1300, ...
8  | 1, 2, 6, 20, 74, 300, 1302, ...
9  | 1, 2, 6, 20, 74, 300, 1302, ...
		

Crossrefs

Programs

  • Python
    # Using graphillion
    from graphillion import GraphSet
    import graphillion.tutorial as tl
    def A333651(n):
        universe = tl.grid(n - 1, n - 1)
        GraphSet.set_universe(universe)
        cycles = GraphSet.cycles().including(1)
        return [cycles.len(2 * k).len() for k in range(2, n * n // 2 + 1)]
    print([i for n in range(2, 8) for i in A333651(n)])

Formula

T(n,k) = A034010(k+2) for k <= n-2.

A039618 Number of 2n-step self-avoiding closed walks on first octant of 3-dimensional cubic lattice, passing through origin.

Original entry on oeis.org

1, 0, 3, 18, 138, 1278, 13410, 154584, 1919352, 25273422, 348989058, 5011939788, 74393974476, 1135821378924
Offset: 0

Views

Author

Keywords

Crossrefs

Extensions

a(11)-a(13) from Sean A. Irvine, Feb 19 2021

A038393 Number of 4n-step self-avoiding closed paths on first quadrant grid, passing through origin, symmetric about line y = x.

Original entry on oeis.org

1, 1, 2, 6, 20, 78, 342, 1608, 7966, 41054, 218342, 1191038, 6635164, 37621952, 216557220, 1262829914, 7447921572
Offset: 0

Views

Author

Keywords

Crossrefs

Cf. A034010.
Showing 1-4 of 4 results.