cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A034020 Not of the form x^2 + x*y + y^2.

Original entry on oeis.org

2, 5, 6, 8, 10, 11, 14, 15, 17, 18, 20, 22, 23, 24, 26, 29, 30, 32, 33, 34, 35, 38, 40, 41, 42, 44, 45, 46, 47, 50, 51, 53, 54, 55, 56, 58, 59, 60, 62, 65, 66, 68, 69, 70, 71, 72, 74, 77, 78, 80, 82, 83, 85, 86, 87, 88, 89, 90, 92, 94, 95, 96, 98, 99, 101, 102, 104, 105
Offset: 1

Views

Author

Keywords

Comments

Appears to be the sequence of nonsquare n such that sigma(n)==0 (mod 3). - Benoit Cloitre, Sep 17 2002
First counterexample is 147 = 11^2 + 11*2 + 2^2 since sigma(147) = 3 * 76. See A087943. - Charles R Greathouse IV, Jun 29 2011
Numbers n such that n-th coefficient of eta(x)^3/eta(x^3) is zero where eta(x) coefficients are given by A010815. - Benoit Cloitre, Oct 06 2005
A088534(a(n)) = 0. - Reinhard Zumkeller, Oct 30 2011

Crossrefs

Cf. A003136 (complement), A003627 (primes). Subsequence of A087943.

Programs

  • Haskell
    a034020 n = a034020_list !! (n-1)
    a034020_list = f [0..] a003136_list where
       f (x:xs) ys'@(y:ys) | x < y = x : f xs ys'
                           | otherwise = f xs ys
    -- Reinhard Zumkeller, Oct 30 2011
  • Mathematica
    Select[Range@ 105, ! Resolve[Exists[{x, y}, Reduce[# == x^2 + x y + y^2, {x, y}, Integers]]] &] (* Michael De Vlieger, Jan 06 2016 *)
  • PARI
    default(seriesprecision, 105); for(n=1, 105, if (polcoeff(eta(x)^3/eta(x^3)+O(x^(n+1)), n) == 0, print1(n,","))) \\ Benoit Cloitre, Oct 06 2005
    
  • PARI
    x='x+O('x^100); p=eta(x)^3/eta(x^3); for(n=1, 99, if(polcoeff(p, n)==0, print1(n, ", "))); \\ Altug Alkan, Nov 08 2015
    
  • PARI
    list(lim)=my(v=List(), y, t); lim\=1; for(x=0, sqrtint(lim\3), my(y=x, t); while((t=x^2+x*y+y^2)<=lim, listput(v, t); y++)); v=Set(v); setminus([2..lim], v) \\ Charles R Greathouse IV, Jul 05 2017
    

Formula

a(n) ~ n. - Charles R Greathouse IV, Jul 05 2017

Extensions

More terms from James Sellers, May 04 2000
Correct offset=1 by Ray Chandler, Jan 29 2009