cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A034089 Numbers that are proper divisors of the number you get by rotating digits right once.

Original entry on oeis.org

102564, 128205, 142857, 153846, 179487, 205128, 230769, 102564102564, 128205128205, 142857142857, 153846153846, 179487179487, 205128205128, 230769230769, 1012658227848, 1139240506329, 102564102564102564
Offset: 1

Views

Author

Keywords

Comments

Let p(q) denote the period of the fraction q; then sequence is generated by p(i / (10k-1)), k=2,3,4,5,6,7,8,9; k <= i <= 9 and the concatenations of those periods, e.g., p(7/39)=a(5) p(2/19)=a(17).
Example if k=5: p((5+2)/49)=142857 which is in the sequence as the concatenations 142857142857, 142857142857142857, 142857142857142857142857, etc. - Benoit Cloitre, Feb 02 2002
The i in p(i / (10k-1)) is the last digit of the period, while k is equal to the ratio (right-rotated of p)/p. Thus no concatenation of any different such p's can be in the sequence. There are 8*9/2 = 36 terms which are not concatenation of previous terms, the last one being a(124) = 1525423728813559322033898305084745762711864406779661016949 with 58 digits. The term a(3)=p(7/49) is the only period of length (6) different from the length (42) of the other terms corresponding to the same value of k. - M. F. Hasler, Nov 18 2007
Numbers comprising multiple copies of a single digit, e.g., 111111, are not permitted. - Harvey P. Dale, Mar 08 2013
From Emmanuel Vantieghem, Oct 25 2015: (Start)
Subsequence of A245680.
Every element of the sequence is a multiple of 3.
The leading digit of every element is < 5.
(End)

Crossrefs

Subsequences of this sequence (with quotient k): A146088 (k=2), A146561 (k=3), A146569 (k=4), A146754 (k=5), A291354 (k=6), A291215 (k=7), A291321 (k=8), A291353 (k=9).

Programs

  • PARI
    period(p,q,S=[])=until(setsearch(S,p),S=setunion(S,[p]);p=10*p%q);S=[];until(p==S[1],S=concat(S,p);p=10*p%q);S*10\q /* print list of periods, right-rotated and ratio */ rotquo(n,d)={d=divrem(n,10);d[1]+=d[2]*10^#Str(d[1]);[n,d[1],d[1]/n]} for(k=2,9,for(i=k,9,print1( i/(10*k-1),"\t",rotquo(sum(j=1,#p=period(i,k*10-1),p[j]*10^(#p-j))))) /* build the sequence up to the greatest period */ A034089()={local(S=[],p); for(k=2,9,for(i=k,9,S=concat(S,sum(j=1,#p=period(i,k*10-1),p[j]*10^(#p-j))))); S=vecsort(S); for(i=1,#S, for(c=2,58\p=#Str(S[i]), S=concat(S,S[i]*(10^(c*p)-1)/(10^p-1)) )); vecsort(S)} \\ M. F. Hasler, Nov 18 2007

Extensions

Edited, corrected and extended by M. F. Hasler, Nov 18 2007