A034090 Numbers k whose sum of proper divisors (A001065(k)) exceeds that of all smaller numbers.
1, 2, 4, 6, 8, 10, 12, 18, 20, 24, 30, 36, 48, 60, 72, 84, 90, 96, 108, 120, 144, 168, 180, 216, 240, 288, 300, 336, 360, 420, 480, 504, 540, 600, 660, 720, 840, 960, 1008, 1080, 1200, 1260, 1440, 1560, 1680, 1980, 2100, 2160, 2340, 2400, 2520, 2880, 3120, 3240
Offset: 1
Examples
From _William A. Tedeschi_, Aug 19 2010: (Start) -- 12: 1+2+3+4+6 = 16 13: 1 = 1 14: 1+2+7 = 10 15: 1+3+5 = 9 16: 1+2+4+8 = 15 17: 1 = 1 -- 18: 1+2+3+6+9 = 21 As 12 had the previous (earliest) highest, it is a term; then since 18 has the new highest, it is a term. (End) Table of initial values of n, a(n), A034091(n) = f(a(n)), where f(k) = sigma(k)-k = A001065(k): 1, 1, 0 2, 2, 1 3, 4, 3 4, 6, 6 5, 8, 7 6, 10, 8 7, 12, 16 8, 18, 21 9, 20, 22 10, 24, 36 11, 30, 42 12, 36, 55 13, 48, 76 14, 60, 108 15, 72, 123 16, 84, 140 17, 90, 144 18, 96, 156 19, 108, 172 20, 120, 240
Links
- Don Reble, Table of n, a(n) for n = 1..6524 (first 372 terms from _T. D. Noe_, terms 373 to 1000 from _Donovan Johnson_, terms 1001 to 2750 from Robert G. Wilson v)
Crossrefs
Programs
-
Mathematica
A = {}; mx = -1; For[ k = 1, k < 10000, k++, t = DivisorSigma[1, k] - k; If[ t > mx, mx = t; AppendTo[A, k]]]; A (* slightly modified by Robert G. Wilson v, Aug 28 2022 *) DeleteDuplicates[Table[{n,DivisorSigma[1,n]-n},{n,5000}],GreaterEqual[ #1[[2]],#2[[2]]]&][[All,1]] (* Harvey P. Dale, Jan 15 2023 *)
-
PARI
r=0; for(n=1,1e6, t=sigma(n)-n; if(t>r, r=t; print1(n", "))) \\ Charles R Greathouse IV, Sep 13 2016
Extensions
More terms from Erich Friedman
Comments