cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A034090 Numbers k whose sum of proper divisors (A001065(k)) exceeds that of all smaller numbers.

Original entry on oeis.org

1, 2, 4, 6, 8, 10, 12, 18, 20, 24, 30, 36, 48, 60, 72, 84, 90, 96, 108, 120, 144, 168, 180, 216, 240, 288, 300, 336, 360, 420, 480, 504, 540, 600, 660, 720, 840, 960, 1008, 1080, 1200, 1260, 1440, 1560, 1680, 1980, 2100, 2160, 2340, 2400, 2520, 2880, 3120, 3240
Offset: 1

Views

Author

Keywords

Comments

The highly abundant numbers A002093 are a subsequence since if sigma(k) - k > sigma(m) - m for all m < n then sigma(k) > sigma(m). - Charles R Greathouse IV, Sep 13 2016

Examples

			From _William A. Tedeschi_, Aug 19 2010: (Start)
-- 12: 1+2+3+4+6 = 16
13: 1 = 1
14: 1+2+7 = 10
15: 1+3+5 = 9
16: 1+2+4+8 = 15
17: 1 = 1
-- 18: 1+2+3+6+9 = 21
As 12 had the previous (earliest) highest, it is a term; then since 18 has the new highest, it is a term. (End)
Table of initial values of n, a(n), A034091(n) = f(a(n)), where f(k) = sigma(k)-k = A001065(k):
1, 1, 0
2, 2, 1
3, 4, 3
4, 6, 6
5, 8, 7
6, 10, 8
7, 12, 16
8, 18, 21
9, 20, 22
10, 24, 36
11, 30, 42
12, 36, 55
13, 48, 76
14, 60, 108
15, 72, 123
16, 84, 140
17, 90, 144
18, 96, 156
19, 108, 172
20, 120, 240
		

Crossrefs

This sequence and A034091 together give the record high points in A001065.
Supersequence of A002093.

Programs

  • Mathematica
    A = {}; mx = -1; For[ k = 1, k < 10000, k++, t = DivisorSigma[1, k] - k; If[ t > mx, mx = t; AppendTo[A, k]]]; A (* slightly modified by Robert G. Wilson v, Aug 28 2022 *)
    DeleteDuplicates[Table[{n,DivisorSigma[1,n]-n},{n,5000}],GreaterEqual[ #1[[2]],#2[[2]]]&][[All,1]] (* Harvey P. Dale, Jan 15 2023 *)
  • PARI
    r=0; for(n=1,1e6, t=sigma(n)-n; if(t>r, r=t; print1(n", "))) \\ Charles R Greathouse IV, Sep 13 2016

Extensions

More terms from Erich Friedman