cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 14 results. Next

A001065 Sum of proper divisors (or aliquot parts) of n: sum of divisors of n that are less than n.

Original entry on oeis.org

0, 1, 1, 3, 1, 6, 1, 7, 4, 8, 1, 16, 1, 10, 9, 15, 1, 21, 1, 22, 11, 14, 1, 36, 6, 16, 13, 28, 1, 42, 1, 31, 15, 20, 13, 55, 1, 22, 17, 50, 1, 54, 1, 40, 33, 26, 1, 76, 8, 43, 21, 46, 1, 66, 17, 64, 23, 32, 1, 108, 1, 34, 41, 63, 19, 78, 1, 58, 27, 74, 1, 123, 1, 40, 49, 64, 19, 90, 1, 106
Offset: 1

Views

Author

Keywords

Comments

Also total number of parts in all partitions of n into equal parts that do not contain 1 as a part. - Omar E. Pol, Jan 16 2013
Related concepts: If a(n) < n, n is said to be deficient, if a(n) > n, n is abundant, and if a(n) = n, n is perfect. If there is a cycle of length 2, so that a(n) = b and a(b) = n, b and n are said to be amicable. If there is a longer cycle, the numbers in the cycle are said to be sociable. See examples. - Juhani Heino, Jul 17 2017
Sum of the smallest parts in the partitions of n into two parts such that the smallest part divides the largest. - Wesley Ivan Hurt, Dec 22 2017
a(n) is also the total number of parts congruent to 0 mod k in the partitions of k*n into equal parts that do not contain k as a part (the comment dated Jan 16 2013 is the case for k = 1). - Omar E. Pol, Nov 23 2019
Fixed points are in A000396. - Alois P. Heinz, Mar 10 2024

Examples

			x^2 + x^3 + 3*x^4 + x^5 + 6*x^6 + x^7 + 7*x^8 + 4*x^9 + 8*x^10 + x^11 + ...
For n = 44, sum of divisors of n = sigma(n) = 84; so a(44) = 84-44 = 40.
Related concepts: (Start)
From 1 to 17, all n are deficient, except 6 and 12 seen below. See A005100.
Abundant numbers: a(12) = 16, a(18) = 21. See A005101.
Perfect numbers: a(6) = 6, a(28) = 28. See A000396.
Amicable numbers: a(220) = 284, a(284) = 220. See A259180.
Sociable numbers: 12496 -> 14288 -> 15472 -> 14536 -> 14264 -> 12496. See A122726. (End)
For n = 10 the sum of the divisors of 10 that are less than 10 is 1 + 2 + 5 = 8. On the other hand, the partitions of 10 into equal parts that do not contain 1 as a part are [10], [5,5], [2,2,2,2,2], there are 8 parts, so a(10) = 8. - _Omar E. Pol_, Nov 24 2019
		

References

  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 840.
  • George E. Andrews, Number Theory. New York: Dover, 1994; Pages 1, 75-92; p. 92 #15: Sigma(n) / d(n) >= n^(1/2).
  • Carl Pomerance, The first function and its iterates, pp. 125-138 in Connections in Discrete Mathematics, ed. S. Butler et al., Cambridge, 2018.
  • H. J. J. te Riele, Perfect numbers and aliquot sequences, pp. 77-94 in J. van de Lune, ed., Studieweek "Getaltheorie en Computers", published by Math. Centrum, Amsterdam, Sept. 1980.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • James J. Tattersall, Elementary Number Theory in Nine Chapters, Cambridge University Press, 1999, page 91.

Crossrefs

Least inverse: A070015, A359132.
Values taken: A078923, values not taken: A005114.
Records: A034090, A034091.
First differences: A053246, partial sums: A153485.
a(n) = n - A033879(n) = n + A033880(n). - Omar E. Pol, Dec 30 2013
Row sums of A141846 and of A176891. - Gary W. Adamson, May 02 2010
Row sums of A176079. - Mats Granvik, May 20 2012
Alternating row sums of A231347. - Omar E. Pol, Jan 02 2014
a(n) = sum (A027751(n,k): k = 1..A000005(n)-1). - Reinhard Zumkeller, Apr 05 2013
For n > 1: a(n) = A240698(n,A000005(n)-1). - Reinhard Zumkeller, Apr 10 2014
A134675(n) = A007434(n) + a(n). - Conjectured by John Mason and proved by Max Alekseyev, Jan 07 2015
Cf. A037020 (primes), A053868, A053869 (odd and even terms).
Cf. A048138 (number of occurrences), A238895, A238896 (record values thereof).
Cf. A007956 (products of proper divisors).
Cf. A005100, A005101, A000396, A259180, A122726 (related concepts).

Programs

  • Haskell
    a001065 n = a000203 n - n  -- Reinhard Zumkeller, Sep 15 2011
    
  • Magma
    [SumOfDivisors(n)-n: n in [1..100]]; // Vincenzo Librandi, May 06 2015
    
  • Maple
    A001065 := proc(n)
        numtheory[sigma](n)-n ;
    end proc:
    seq( A001065(n),n=1..100) ;
  • Mathematica
    Table[ Plus @@ Select[ Divisors[ n ], #Zak Seidov, Sep 10 2009 *)
    Table[DivisorSigma[1, n] - n, {n, 1, 80}] (* Jean-François Alcover, Apr 25 2013 *)
    Array[Plus @@ Most@ Divisors@# &, 80] (* Robert G. Wilson v, Dec 24 2017 *)
  • MuPAD
    numlib::sigma(n)-n$ n=1..81 // Zerinvary Lajos, May 13 2008
    
  • PARI
    {a(n) = if( n==0, 0, sigma(n) - n)} /* Michael Somos, Sep 20 2011 */
    
  • Python
    from sympy import divisor_sigma
    def A001065(n): return divisor_sigma(n)-n # Chai Wah Wu, Nov 04 2022
    
  • Sage
    [sigma(n, 1)-n for n in range(1, 81)] # Stefano Spezia, Jul 14 2025

Formula

G.f.: Sum_{k>0} k * x^(2*k)/(1 - x^k). - Michael Somos, Jul 05 2006
a(n) = sigma(n) - n = A000203(n) - n. - Lekraj Beedassy, Jun 02 2005
a(n) = A155085(-n). - Michael Somos, Sep 20 2011
Equals inverse Mobius transform of A051953 = A051731 * A051953. Example: a(6) = 6 = (1, 1, 1, 0, 0, 1) dot (0, 1, 1, 2, 1, 4) = (0 + 1 + 1 + 0 + 0 + 4), where A051953 = (0, 1, 1, 2, 1, 4, 1, 4, 3, 6, 1, 8, ...) and (1, 1, 1, 0, 0, 1) = row 6 of A051731 where the 1's positions indicate the factors of 6. - Gary W. Adamson, Jul 11 2008
a(n) = A006128(n) - A220477(n) - n. - Omar E. Pol Jan 17 2013
a(n) = Sum_{i=1..floor(n/2)} i*(1-ceiling(frac(n/i))). - Wesley Ivan Hurt, Oct 25 2013
Dirichlet g.f.: zeta(s-1)*(zeta(s) - 1). - Ilya Gutkovskiy, Aug 07 2016
a(n) = 1 + A048050(n), n > 1. - R. J. Mathar, Mar 13 2018
Erdős (Elem. Math. 28 (1973), 83-86) shows that the density of even integers in the range of a(n) is strictly less than 1/2. The argument of Coppersmith (1987) shows that the range of a(n) has density at most 47/48 < 1. - N. J. A. Sloane, Dec 21 2019
G.f.: Sum_{k >= 2} x^k/(1 - x^k)^2. Cf. A296955. (This follows from the fact that if g(z) = Sum_{n >= 1} a(n)*z^n and f(z) = Sum_{n >= 1} a(n)*z^(N*n)/(1 - z^n) then f(z) = Sum_{k >= N} g(z^k), taking a(n) = n and N = 2.) - Peter Bala, Jan 13 2021
Faster converging g.f.: Sum_{n >= 1} q^(n*(n+1))*(n*q^(3*n+2) - (n + 1)*q^(2*n+1) - (n - 1)*q^(n+1) + n)/((1 - q^n)*(1 - q^(n+1))^2). (In equation 1 in Arndt, after combining the two n = 0 summands to get -t/(1 - t), apply the operator t*d/dt to the resulting equation and then set t = q and x = 1.) - Peter Bala, Jan 22 2021
a(n) = Sum_{d|n} d * (1 - [n = d]), where [ ] is the Iverson bracket. - Wesley Ivan Hurt, Jan 28 2021
a(n) = Sum_{i=1..n} ((n-1) mod i) - (n mod i). [See also A176079.] - José de Jesús Camacho Medina, Feb 23 2021

A034287 Numbers whose product of divisors is larger than that of any smaller number.

Original entry on oeis.org

1, 2, 3, 4, 6, 8, 10, 12, 18, 20, 24, 30, 36, 48, 60, 72, 84, 90, 96, 108, 120, 168, 180, 240, 336, 360, 420, 480, 504, 540, 600, 630, 660, 672, 720, 840, 1080, 1260, 1440, 1680, 2160, 2520, 3360, 3780, 3960, 4200, 4320, 4620, 4680, 5040, 7560, 9240
Offset: 1

Views

Author

Keywords

Comments

It appears that 2 and 3 are the only terms in this sequence that are not in A034288. - T. D. Noe, Mar 10 2007
Is this the same as A067128?
a(n) = numbers m where record values occur in A007955(m); A007955(m) = product of divisors of m. a(n) = possible values of A174901(m) in increasing order, a(n) = the smallest numbers k such that A007955(k) = A174899(n). - Jaroslav Krizek, Apr 01 2010
Equals A067128 for the 105834 terms less than 10^150.

Crossrefs

Programs

  • Mathematica
    divProd[n_] := Times @@ Divisors[n]; a[1] = 1; a[n_] := a[n] = Catch[For[dp = divProd[an = a[n - 1]]; an++, True, an++, If[divProd[an] > dp, Throw[an]]]]; Table[a[n], {n, 1, 52}] (* Jean-François Alcover, Feb 01 2013 *)
    DeleteDuplicates[Table[{n,Times@@Divisors[n]},{n,10000}],GreaterEqual[#1[[2]],#2[[2]]]&] [[;;,1]] (* Harvey P. Dale, Oct 07 2023 *)
  • PARI
    A007955(n)=if(issquare(n, &n), n^numdiv(n^2), n^(numdiv(n)/2))
    r=0;for(n=1,1e5,t=A007955(n);if(t>r,r=t;print1(n", "))) \\ Charles R Greathouse IV, Feb 01 2013

Extensions

More terms from David W. Wilson, Dec 19 2001

A034091 Records for sum of proper divisors function A001065.

Original entry on oeis.org

0, 1, 3, 6, 7, 8, 16, 21, 22, 36, 42, 55, 76, 108, 123, 140, 144, 156, 172, 240, 259, 312, 366, 384, 504, 531, 568, 656, 810, 924, 1032, 1056, 1140, 1260, 1356, 1698, 2040, 2088, 2216, 2520, 2644, 3108, 3474, 3480, 4272, 4572, 4844, 5280, 5304, 5412, 6840
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    With[{list1=DeleteDuplicates[Array[DivisorSigma[1, #]-#&, 3000, 0]]}, list2 = {}; Table[If[list1[[n]]>Max[list2], AppendTo[list2, list1[[n]]]], {n, Length[ list1]}]; list2] (* Harvey P. Dale, Dec 30 2011 *)
    t = {0}; n = 1; mx = 0; While[Length[t] < 100, n++; s = DivisorSigma[1, n] - n; If[s > mx, mx = s; AppendTo[t, mx]]]; t (* T. D. Noe, Feb 23 2012 *)
    DeleteDuplicates[Array[DivisorSigma[1,#]-#&,3000],GreaterEqual] (* Harvey P. Dale, Aug 20 2022 *)
  • PARI
    r=0; for(n=1,1e9, t=sigma(n)-n; if(t>r, r=t; print1(t", "))) \\ Charles R Greathouse IV, Feb 09 2017

Extensions

More terms from Erich Friedman.

A034288 Product of proper divisors is larger than for any smaller number.

Original entry on oeis.org

1, 4, 6, 8, 10, 12, 18, 20, 24, 30, 36, 48, 60, 72, 84, 90, 96, 108, 120, 168, 180, 240, 336, 360, 420, 480, 504, 540, 600, 630, 660, 672, 720, 840, 1080, 1260, 1440, 1680, 2160, 2520, 3360, 3780, 3960, 4200, 4320, 4620, 4680, 5040, 7560, 9240, 10080
Offset: 1

Views

Author

Keywords

Crossrefs

Indices of records of A007956.

Programs

  • Mathematica
    maxTerm = 10^6; record = 0; Reap[For[n = 1, n <= maxTerm, n++, p = Times @@ Most[Divisors[n]]; If[p > record, record = p; Print[n]; Sow[n]]]][[2, 1]] (* Jean-François Alcover, Aug 01 2013 *)
    DeleteDuplicates[Table[{n,Times@@Most[Divisors[n]]},{n,11000}],GreaterEqual[#1[[2]],#2[[2]]]&][[;;,1]] (* Harvey P. Dale, Nov 21 2024 *)

A280013 Numbers k such that sum of squarefree divisors of k > sum of squarefree divisors of m for all m < k.

Original entry on oeis.org

1, 2, 3, 5, 6, 10, 14, 21, 22, 26, 30, 42, 66, 78, 102, 114, 130, 138, 170, 174, 186, 210, 318, 330, 390, 462, 510, 546, 570, 690, 798, 858, 870, 930, 1110, 1218, 1230, 1290, 1410, 1554, 1590, 1722, 1770, 1830, 1974, 2010, 2130, 2190, 2310, 2730, 3390, 3570, 3990, 4290, 4830, 5610
Offset: 1

Views

Author

Ilya Gutkovskiy, Apr 14 2017

Keywords

Comments

Numbers k such that psi(rad(k)) > psi(rad(m)) for all m < k, where psi() is the Dedekind psi function (A001615) and rad() is the squarefree kernel (A007947).
Numbers k such that Sum_{d|k} mu(d)^2*d > Sum_{d|m} mu(d)^2*d for all m < k, where mu() is the Moebius function (A008683).
All terms are squarefree. - Robert Israel, Apr 19 2017

Crossrefs

Programs

  • Maple
    ssd:= n -> convert(select(numtheory:-issqrfree,numtheory:-divisors(n)),`+`):
    M:= 0: A:= NULL:
    for n from 1 to 10^5 do
        r:= ssd(n);
        if r > M then M:= r; A:= A, n fi
    od:
    A; # Robert Israel, Apr 19 2017
  • Mathematica
    mx = 0; t = {}; Do[u = DivisorSum[n, # &, SquareFreeQ[#] &]; If[u > mx, mx = u; AppendTo[t, n]], {n, 6000}]; t
  • Python
    from sympy.ntheory.factor_ import core
    from sympy import divisors
    def s(n): return sum(list(filter(lambda i: core(i) == i, divisors(n))))
    def ok(n):
        m=1
        while ms(m): return False
            m+=1
        return True # Indranil Ghosh, Apr 16 2017

A070318 a(n) = Max_{k=1..n} (sigma(k)-k) where sigma(k)-k is the sum of proper divisors of k.

Original entry on oeis.org

0, 1, 1, 3, 3, 6, 6, 7, 7, 8, 8, 16, 16, 16, 16, 16, 16, 21, 21, 22, 22, 22, 22, 36, 36, 36, 36, 36, 36, 42, 42, 42, 42, 42, 42, 55, 55, 55, 55, 55, 55, 55, 55, 55, 55, 55, 55, 76, 76, 76, 76, 76, 76, 76, 76, 76, 76, 76, 76, 108, 108, 108, 108, 108, 108, 108, 108, 108, 108
Offset: 1

Views

Author

Benoit Cloitre, May 11 2002

Keywords

Crossrefs

Programs

  • Mathematica
    FoldList[Max, Array[DivisorSigma[1, #] - # &, 100]] (* Amiram Eldar, Aug 04 2024 *)
  • PARI
    lista(nmax) = {my(smax = -1); for(n = 1, nmax, smax = max(smax, sigma(n) - n); print1(smax, ", "));} \\ Amiram Eldar, Aug 04 2024

Formula

Limit_{n -> oo} (1/n^2) * Sum_{i=1..n} a(i) = C = 0.7... . [It seems that this limit in fact diverges to infinity; see the first plot in the links section. - Amiram Eldar, Aug 04 2024]
Conjecture: Limit_{n -> oo} (1/(n^2*log(log(n)))) * Sum_{i=1..n} a(i) = C = 0.7... . (see the second plot in the links section). - Amiram Eldar, Aug 04 2024

A131984 Where records occur in A106708.

Original entry on oeis.org

1, 4, 6, 8, 10, 12, 18, 20, 24, 30, 36, 48, 60, 84, 90, 120, 168, 180, 240, 336, 360, 420, 480, 540, 600, 660, 720, 840, 1080, 1260, 1440, 1680, 2160, 2520, 3360, 3780, 4200, 4620, 5040, 7560, 9240, 10080, 12600, 13860, 15120, 18480, 20160, 25200, 27720
Offset: 1

Views

Author

Klaus Brockhaus, Aug 05 2007

Keywords

Comments

Numbers n such that concatenation of proper divisors of n exceeds that of all smaller numbers. Empty concatenation is regarded as 0.
Sequence has many terms in common with A034090 (numbers n such that sum of proper divisors of n exceeds that of all smaller numbers), A034287 (numbers n such that product of divisors of n is larger than for any number less than n), A034288 (product of proper divisors is larger than for any smaller number), A067128 (Ramanujan's largely composite numbers, defined to be n such that d(n) >= d(k) for k = 1 to n-1).

Crossrefs

Programs

  • Mathematica
    DeleteDuplicates[Table[{n,If[CompositeQ[n],FromDigits[Flatten[IntegerDigits/@Rest[ Most[ Divisors[n]]]]],0]},{n,30000}],GreaterEqual[#1[[2]],#2[[2]]]&][[;;,1]] (* Harvey P. Dale, Apr 27 2024 *)
  • PARI
    {map(n) = local(d); d=divisors(n); if(#d<3, 0, d[1]=""; eval(concat(vecextract(d, concat("..", #d-1)))))} {m=28000; r=-1; for(n=1, m, if(r<(a=map(n)), r=a; print1(n, ",")))}

A140522 Numbers for which sigma(n) - 2n exceeds sigma(k) - 2k for all k < n.

Original entry on oeis.org

1, 6, 12, 24, 36, 48, 60, 72, 84, 96, 108, 120, 168, 180, 240, 300, 336, 360, 420, 480, 540, 600, 660, 720, 840, 1008, 1080, 1200, 1260, 1440, 1680, 2100, 2160, 2520, 3240, 3360, 3780, 3960, 4200, 4620, 4680, 5040, 6300, 6720, 7200, 7560, 8400, 9240, 10080
Offset: 1

Views

Author

J. Lowell, Jul 02 2008

Keywords

Examples

			72 is the smallest number > 60 with an abundance > the abundance of 60. - _Donovan Johnson_, Jan 20 2012
		

Crossrefs

Cf. A002093 (d=0) and A034090 (d=1).

Programs

  • Mathematica
    a = {1}; m = -1; For[n = 2, n < 20000, n++, If[DivisorSigma[1, n] - 2*n > m, m = DivisorSigma[1, n] - 2*n; AppendTo[a, n]]]; a (* Stefan Steinerberger, Aug 04 2008 *)
    DeleteDuplicates[Table[{n,DivisorSigma[1,n]-2n},{n,11000}],GreaterEqual[ #1[[2]],#2[[2]]]&][[;;,1]] (* Harvey P. Dale, Mar 16 2023 *)

Extensions

More terms from Stefan Steinerberger, Aug 04 2008

A141037 Numbers n where the sum of all of its divisors <= sqrt(n) exceeds the sum of all the divisors of m <= sqrt(m) for all m

Original entry on oeis.org

1, 4, 9, 12, 16, 24, 30, 36, 60, 72, 90, 120, 144, 180, 240, 336, 360, 420, 480, 504, 600, 630, 672, 720, 840, 1080, 1260, 1440, 1680, 2160, 2520, 3360, 3600, 3780, 3960, 4200, 4320, 4620, 5040, 6720, 7560, 9240, 10080, 12600, 13860, 15120, 18480, 20160
Offset: 1

Views

Author

J. Lowell, Jul 28 2008

Keywords

Examples

			12 qualifies because it sets a record of 1+2+3=6. (1, 2 and 3 are the divisors of 12 <= sqrt(12).)
		

Crossrefs

Cf. A002093 (all divisors), A034090 (all divisors except n itself).
Cf. A066839, A143837 (records of sums).

Programs

  • Mathematica
    lst = {}; s = -1; Do[t = Plus @@ Select[Divisors@n, # <= Sqrt@n &]; If[t > s, AppendTo[lst, n]; s = t], {n, 25199}]; lst (* Robert G. Wilson v, Aug 03 2008 *)

Extensions

More terms from Robert G. Wilson v, Aug 03 2008

A279088 Numbers k for which sigma(k) - 3k exceeds sigma(j) - 3j for all j < k.

Original entry on oeis.org

1, 120, 180, 240, 360, 720, 840, 1260, 1440, 1680, 2160, 2520, 3360, 3780, 3960, 4200, 4680, 5040, 7560, 9240, 10080, 12600, 13860, 15120, 18480, 20160, 22680, 25200, 27720, 30240, 32760, 36960, 37800, 40320, 42840, 45360, 50400, 55440, 65520, 75600, 83160
Offset: 1

Views

Author

Jon E. Schoenfield, Jan 29 2017

Keywords

Comments

Positions of record lows in A033885. - Robert Israel, Jan 30 2017

Examples

			240 is in the sequence because sigma(240) - 3*240 = 744 - 720 = 24, and no k < 240 has a value of sigma(k) - 3k this large.
		

Crossrefs

Cf. A002093 (d=0), A034090 (d=1), and A140522 (d=2).
Cf. A033885.

Programs

  • MATLAB
    N = 10^6; % to get all terms <= N
    V = 1-3*[1:N];
    m = V(1);
    A(1) = 1;
    for n=2:N
      V(n*[1:N/n]) = V(n*[1:N/n]) + n;
      if V(n) > m
        m = V(n);
        A(end+1) = n;
      end
    end
    A % Robert Israel, Jan 30 2017
  • Maple
    m:= numtheory:-sigma(1) - 3:
    count:= 1:
    A[1]:= 1:
    for n from 2 to 10^6 do
      v:= numtheory:-sigma(n)-3*n;
      if v > m then
         count:= count+1;
         A[count]:= n;
         m:= v;
      fi;
    od:
    seq(A[i],i=1..count); # Robert Israel, Jan 30 2017
  • Mathematica
    With[{s = Array[DivisorSigma[1, #] - 3 # &, 10^5]}, FirstPosition[s, #][[1]] & /@ Union@ FoldList[Max, s]] (* Michael De Vlieger, Dec 16 2017 *)
  • PARI
    isok(k) = {my(x = sigma(k) - 3*k); for (j=1, k-1, if (sigma(j) - 3*j > x, return (0));); 1;} \\ Michel Marcus, Jan 30 2017
    

Extensions

Duplicate a(2)-a(43) removed from b-file by Andrew Howroyd, Feb 27 2018
Showing 1-10 of 14 results. Next