A034096 Fractional part of square root of n starts with digit 0 (squares excluded).
26, 37, 50, 65, 82, 101, 102, 122, 123, 145, 146, 170, 171, 197, 198, 226, 227, 228, 257, 258, 259, 290, 291, 292, 325, 326, 327, 362, 363, 364, 401, 402, 403, 404, 442, 443, 444, 445, 485, 486, 487, 488, 530, 531, 532, 533, 577, 578, 579, 580, 626, 627
Offset: 1
Examples
sqrt(145) = 12.041594578792295..., so 145 is in the sequence. sqrt(146) = 12.083045973594572..., so 146 is also in the sequence. sqrt(147) = 12.124355652982141..., so 147 is not in the sequence.
Links
- Nathaniel Johnston, Table of n, a(n) for n = 1..10000
Programs
-
Maple
A034096 := proc(n) option remember: local k,rt: if(n=1)then return 26: else k:=procname(n-1)+1: do rt:=sqrt(k): if(not frac(rt)=0 and floor(10*rt) mod 10 = 0)then return k: fi: k:=k+1: od: fi: end: seq(A034096(n), n=1..50); # Nathaniel Johnston, May 04 2011 seq(seq(x, x=floor(n^2) +1 .. ceil((n+1/10)^2)-1),n=1..100); # Robert Israel, Sep 21 2015
-
Mathematica
zdQ[n_] := Module[{c = Sqrt[n], sr, i, l}, sr = RealDigits[c, 10, 5]; i = Last[sr] + 1; l = First[sr]; l[[i]] == 0 && !IntegerQ[c]]; Select[Range[700], zdQ] (* Harvey P. Dale, Oct 10 2011 *) Flatten[Table[Range[n^2 + 1, Floor[(n + 1/10)^2]], {n, 25}]] (* Alonso del Arte, Mar 16 2019 *)
-
PARI
isok(n) = !issquare(n) && !(floor(10*sqrt(n)) % 10); \\ Michel Marcus, Sep 21 2015
-
PARI
is(n)=my(s=sqrtint(n),s2=s^2); s2+s\5 >= n && s2 < n \\ Charles R Greathouse IV, Sep 07 2022
-
PARI
list(lim)=my(v=List(),s=sqrtint(lim\=1)); for(n=5,s-1, for(i=n^2+1,n^2+n\5, listput(v,i))); for(i=s^2+1,min(s^2+s\5,lim), listput(v,i)); Vec(v) \\ Charles R Greathouse IV, Sep 08 2022
Formula
A023961(a(n)) = 0. - Michel Marcus, Sep 21 2015
a(n) = 10n + O(sqrt(n)). - Charles R Greathouse IV, Sep 08 2022
Extensions
Name clarified by Michel Marcus, Sep 21 2015
Comments