cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A034096 Fractional part of square root of n starts with digit 0 (squares excluded).

Original entry on oeis.org

26, 37, 50, 65, 82, 101, 102, 122, 123, 145, 146, 170, 171, 197, 198, 226, 227, 228, 257, 258, 259, 290, 291, 292, 325, 326, 327, 362, 363, 364, 401, 402, 403, 404, 442, 443, 444, 445, 485, 486, 487, 488, 530, 531, 532, 533, 577, 578, 579, 580, 626, 627
Offset: 1

Views

Author

Patrick De Geest, Sep 15 1998

Keywords

Comments

Given n > 4, n^2 + 1 is in the sequence. In fact, as n gets larger, more and more numbers just above n^2 are also in the sequence. For a particular n, the integers between n^2 and (n + 1/10)^2 are in this sequence. - Alonso del Arte, Mar 16 2019

Examples

			sqrt(145) = 12.041594578792295..., so 145 is in the sequence.
sqrt(146) = 12.083045973594572..., so 146 is also in the sequence.
sqrt(147) = 12.124355652982141..., so 147 is not in the sequence.
		

Crossrefs

Programs

  • Maple
    A034096 := proc(n) option remember: local k,rt: if(n=1)then return 26: else k:=procname(n-1)+1: do rt:=sqrt(k): if(not frac(rt)=0 and floor(10*rt) mod 10 = 0)then return k: fi: k:=k+1: od: fi: end: seq(A034096(n), n=1..50); # Nathaniel Johnston, May 04 2011
    seq(seq(x, x=floor(n^2) +1 .. ceil((n+1/10)^2)-1),n=1..100); # Robert Israel, Sep 21 2015
  • Mathematica
    zdQ[n_] := Module[{c = Sqrt[n], sr, i, l}, sr = RealDigits[c, 10, 5]; i = Last[sr] + 1; l = First[sr]; l[[i]] == 0 && !IntegerQ[c]]; Select[Range[700], zdQ] (* Harvey P. Dale, Oct 10 2011 *)
    Flatten[Table[Range[n^2 + 1, Floor[(n + 1/10)^2]], {n, 25}]] (* Alonso del Arte, Mar 16 2019 *)
  • PARI
    isok(n) = !issquare(n) && !(floor(10*sqrt(n)) % 10); \\ Michel Marcus, Sep 21 2015
    
  • PARI
    is(n)=my(s=sqrtint(n),s2=s^2); s2+s\5 >= n && s2 < n \\ Charles R Greathouse IV, Sep 07 2022
    
  • PARI
    list(lim)=my(v=List(),s=sqrtint(lim\=1)); for(n=5,s-1, for(i=n^2+1,n^2+n\5, listput(v,i))); for(i=s^2+1,min(s^2+s\5,lim), listput(v,i)); Vec(v) \\ Charles R Greathouse IV, Sep 08 2022

Formula

A023961(a(n)) = 0. - Michel Marcus, Sep 21 2015
a(n) = 10n + O(sqrt(n)). - Charles R Greathouse IV, Sep 08 2022

Extensions

Name clarified by Michel Marcus, Sep 21 2015