cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A034168 Disjoint discriminants (one form per genus) of type 2 (doubled).

Original entry on oeis.org

2, 6, 10, 22, 30, 42, 58, 70, 78, 102, 130, 190, 210, 330, 462
Offset: 1

Views

Author

Jonathan Borwein (jborwein(AT)cecm.sfu.ca), choi(AT)cecm.sfu.ca (Stephen Choi)

Keywords

References

  • J. M. Borwein and P. B. Borwein, Pi and the AGM, page 293.
  • L. E. Dickson, Introduction to the theory of numbers, Dover, NY, 1929.

Crossrefs

Cf. A000926, A005843, A034169, A055745, A139826. Subsequence of A025052.

Programs

  • Mathematica
    noSol = {};
    Do[lim = Ceiling[(n-2)/3]; found = False; Do[If[n > a*b && Mod[n - a*b, a+b] == 0 && Quotient[n - a*b, a+b] > b, found = True; Break[]], {a, 1, lim-1}, {b, a+1, lim}]; If[!found, AppendTo[noSol, n]], {n, 1000}];
    Select[noSol, EvenQ[#] && SquareFreeQ[#]&] (* Jean-François Alcover, Jul 21 2022, after T. D. Noe in A000926 *)
  • PARI
    ok(n)={n%4==2 && issquarefree(n) && !select(t->t<>2, quadclassunit(-4*n).cyc)} \\ Andrew Howroyd, Jun 09 2018

Formula

Intersection of A005843 and A139826. - Andrew Howroyd, Jun 09 2018