cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A034265 a(n) = binomial(n+6,6)*(6*n+7)/7.

Original entry on oeis.org

1, 13, 76, 300, 930, 2442, 5676, 12012, 23595, 43615, 76648, 129064, 209508, 329460, 503880, 751944, 1097877, 1571889, 2211220, 3061300, 4177030, 5624190, 7480980, 9839700, 12808575, 16513731, 21101328, 26739856, 33622600, 41970280
Offset: 0

Views

Author

Keywords

References

  • A. H. Beiler, Recreations in the Theory of Numbers, Dover, N.Y., 1964, pp. 194-196.

Crossrefs

a(n)=f(n, 5) where f is given in A034261.
Partial sums of A027810.
Cf. A093563 ((6, 1) Pascal, column m=7).
Cf. similar sequences listed in A254142.

Programs

  • GAP
    List([0..30], n-> (6*n+7)*Binomial(n+6,6)/7); # G. C. Greubel, Aug 28 2019
  • Magma
    [(6*n+7)*Binomial(n+6,6)/7: n in [0..40]]; // Vincenzo Librandi, Jul 30 2014
    
  • Maple
    seq((6*n+7)*binomial(n+6,6)/7, n=0..30); # G. C. Greubel, Aug 28 2019
  • Mathematica
    Accumulate[Table[(n+1)Binomial[n+5,5],{n,0,30}]] (* or *) LinearRecurrence[{8,-28,56,-70,56,-28,8,-1}, {1,13,76,300,930,2442,5676, 12012}, 30] (* Harvey P. Dale, Jul 29 2014 *)
    CoefficientList[Series[(1+5x)/(1-x)^8, {x,0,40}], x] (* Vincenzo Librandi, Jul 30 2014 *)
  • PARI
    a(n)=(6*n/7+1)*binomial(n+6,6) \\ Charles R Greathouse IV, Oct 07 2015
    
  • Sage
    [(6*n+7)*binomial(n+6,6)/7 for n in (0..30)] # G. C. Greubel, Aug 28 2019
    

Formula

G.f.: (1+5*x)/(1-x)^8.
a(0)=1, a(1)=13, a(2)=76, a(3)=300, a(4)=930, a(5)=2442, a(6)=5676, a(7)=12012, a(n) = 8*a(n-1) -28*a(n-2) +56*a(n-3) -70*a(n-4) +56*a(n-5) -28*a(n-6) +8*a(n-7) -a(n-8). - Harvey P. Dale, Jul 29 2014

Extensions

Corrected and extended by N. J. A. Sloane, Apr 21 2000