cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A050485 Duplicate of A034265.

Original entry on oeis.org

1, 13, 76, 300, 930, 2442, 5676, 12012, 23595, 43615, 76648, 129064, 209508
Offset: 0

Views

Author

Keywords

A034261 Infinite square array f(a,b) = C(a+b,b+1)*(a*b+a+1)/(b+2), a, b >= 0, read by antidiagonals. Equivalently, triangular array T(n,k) = f(k,n-k), 0 <= k <= n, read by rows.

Original entry on oeis.org

0, 0, 1, 0, 1, 3, 0, 1, 5, 6, 0, 1, 7, 14, 10, 0, 1, 9, 25, 30, 15, 0, 1, 11, 39, 65, 55, 21, 0, 1, 13, 56, 119, 140, 91, 28, 0, 1, 15, 76, 196, 294, 266, 140, 36, 0, 1, 17, 99, 300, 546, 630, 462, 204, 45, 0, 1, 19, 125, 435, 930, 1302, 1218, 750, 285, 55
Offset: 0

Views

Author

Keywords

Comments

f(h,k) = number of paths consisting of steps from (0,0) to (h,k) using h unit steps right, k+1 unit steps up and 1 unit step down, in some order, with first step not down and no repeated points.

Examples

			Triangle begins:
  0;
  0, 1;
  0, 1, 3;
  0, 1, 5,  6;
  0, 1, 7, 14, 10;
  ...
As a square array,
  [ 0  0  0   0   0 ...]
  [ 1  1  1   1   1 ...]
  [ 3  5  7   9  11 ...]
  [ 6 14 25  39  56 ...]
  [10 30 65 119 196 ...]
  [...      ...     ...]
		

Crossrefs

Cf. A001787 (row sums), A000330(n) = f(n,1).
Cf. A034263, A034264, A034265, A034267 - A034275 for diagonals n -> f(n,n+k), for several fixed k.

Programs

  • Maple
    A034261 := proc(n, k) binomial(n, n-k+1)*(k+(k-1)/(k-n-2)); end proc; # argument indices of the triangle
  • Mathematica
    Flatten[Table[Binomial[n,n-k+1](k+(k-1)/(k-n-2)),{n,0,15},{k,0,n}]] (* Harvey P. Dale, Jan 11 2013 *)
  • PARI
    f(h,k)=binomial(h+k,k+1)*(k*h+h+1)/(k+2)
    
  • PARI
    tabl(nn) = for (n=0, nn, for (k=0, n, print1(binomial(n, n-k+1)*(k+(k-1)/(k-n-2)), ", ")); print()); \\ Michel Marcus, Mar 20 2015

Formula

Another formula: f(h,k) = binomial(h+k,k+1) + Sum{C(i+j-1, j)*C(h+k-i-j, k-j+1): i=1, 2, ..., h-1, j=1, 2, ..., k+1}

Extensions

Entry revised by N. J. A. Sloane, Apr 21 2000. The formula for f in the definition was found by Michael Somos.
Edited by M. F. Hasler, Nov 08 2017

A093563 (6,1)-Pascal triangle.

Original entry on oeis.org

1, 6, 1, 6, 7, 1, 6, 13, 8, 1, 6, 19, 21, 9, 1, 6, 25, 40, 30, 10, 1, 6, 31, 65, 70, 40, 11, 1, 6, 37, 96, 135, 110, 51, 12, 1, 6, 43, 133, 231, 245, 161, 63, 13, 1, 6, 49, 176, 364, 476, 406, 224, 76, 14, 1, 6, 55, 225, 540, 840, 882, 630, 300, 90, 15, 1, 6, 61, 280, 765, 1380
Offset: 0

Views

Author

Wolfdieter Lang, Apr 22 2004

Keywords

Comments

The array F(6;n,m) gives in the columns m >= 1 the figurate numbers based on A016921, including the octagonal numbers A000567, (see the W. Lang link).
This is the sixth member, d=6, in the family of triangles of figurate numbers, called (d,1) Pascal triangles: A007318 (Pascal), A029653, A093560-2, for d=1..5.
This is an example of a Riordan triangle (see A093560 for a comment and A053121 for a comment and the 1991 Shapiro et al. reference on the Riordan group). Therefore the o.g.f. for the row polynomials p(n,x):=Sum_{m=0..n} a(n,m)*x^m is G(z,x)=(1+5*z)/(1-(1+x)*z).
The SW-NE diagonals give A022096(n-1) = Sum_{k=0..ceiling((n-1)/2)} a(n-1-k,k), n >= 1, with n=0 value 5. Observation by Paul Barry, Apr 29 2004. Proof via recursion relations and comparison of inputs.
For a closed-form formula for generalized Pascal's triangle see A228576. - Boris Putievskiy, Sep 09 2013

Examples

			Triangle begins
  1;
  6,  1;
  6,  7,  1;
  6, 13,  8,  1;
  6, 19, 21,  9,  1;
  6, 25, 40, 30, 10,  1;
  ...
		

References

  • Kurt Hawlitschek, Johann Faulhaber 1580-1635, Veroeffentlichung der Stadtbibliothek Ulm, Band 18, Ulm, Germany, 1995, Ch. 2.1.4. Figurierte Zahlen.
  • Ivo Schneider: Johannes Faulhaber 1580-1635, Birkhäuser, Basel, Boston, Berlin, 1993, ch.5, pp. 109-122.

Crossrefs

Row sums: A005009(n-1), n>=1, 1 for n=0, alternating row sums are 1 for n=0, 5 for n=2 and 0 else.
The column sequences give for m=1..9: A016921, A000567 (octagonal), A002414, A002419, A051843, A027810, A034265, A054487, A055848.

Programs

  • Haskell
    a093563 n k = a093563_tabl !! n !! k
    a093563_row n = a093563_tabl !! n
    a093563_tabl = [1] : iterate
                   (\row -> zipWith (+) ([0] ++ row) (row ++ [0])) [6, 1]
    -- Reinhard Zumkeller, Aug 31 2014
    
  • Mathematica
    lim = 11; s = Series[(1 + 5*x)/(1 - x)^(m + 1), {x, 0, lim}]; t = Table[ CoefficientList[s, x], {m, 0, lim}]; Flatten[ Table[t[[j - k + 1, k]], {j, lim + 1}, {k, j, 1, -1}]] (* Jean-François Alcover, Sep 16 2011, after g.f. *)
  • Python
    from math import comb, isqrt
    def A093563(n): return comb(r:=(m:=isqrt(k:=n+1<<1))-(k<=m*(m+1)),a:=n-comb(r+1,2))*(r+5*(r-a))//r if n else 1 # Chai Wah Wu, Nov 12 2024

Formula

a(n, m)=F(6;n-m, m) for 0<= m <= n, otherwise 0, with F(6;0, 0)=1, F(6;n, 0)=6 if n>=1 and F(6;n, m):= (6*n+m)*binomial(n+m-1, m-1)/m if m>=1.
Recursion: a(n, m)=0 if m>n, a(0, 0)= 1; a(n, 0)=6 if n>=1; a(n, m)= a(n-1, m) + a(n-1, m-1).
G.f. column m (without leading zeros): (1+5*x)/(1-x)^(m+1), m>=0.
T(n, k) = C(n, k) + 5*C(n-1, k). - Philippe Deléham, Aug 28 2005
exp(x) * e.g.f. for row n = e.g.f. for diagonal n. For example, for n = 3 we have exp(x)*(6 + 13*x + 8*x^2/2! + x^3/3!) = 6 + 19*x + 40*x^2/2! + 70*x^3/3! + 110*x^4/4! + .... The same property holds more generally for Riordan arrays of the form ( f(x), x/(1 - x) ). - Peter Bala, Dec 22 2014

A254142 a(n) = (9*n+10)*binomial(n+9,9)/10.

Original entry on oeis.org

1, 19, 154, 814, 3289, 11011, 32032, 83512, 199342, 442442, 923780, 1830764, 3468374, 6317234, 11113784, 18958808, 31461815, 50930165, 80613390, 125014890, 190285095, 284712285, 419329560, 608658960, 871616460, 1232604516, 1722822024, 2381824984
Offset: 0

Views

Author

Bruno Berselli, Jan 26 2015

Keywords

Comments

Partial sums of A056003.
If n is of the form 8*k+2*(-1)^k-1 or 8*k+2*(-1)^k-2 then a(n) is odd.

Crossrefs

Cf. sequences of the type (k*n+k+1)*binomial(n+k,k)/(k+1): A000217 (k=1), A000330 (k=2), A001296 (k=3), A034263 (k=4), A051946 (k=5), A034265 (k=6), A034266 (k=7), A056122 (k=8), this sequence (k=9).

Programs

  • GAP
    List([0..30], n-> (9*n+10)*Binomial(n+9,9)/10); # G. C. Greubel, Aug 28 2019
  • Magma
    [(9*n+10)*Binomial(n+9,9)/10: n in [0..30]];
    
  • Maple
    seq((9*n+10)*binomial(n+9,9)/10, n=0..30); # G. C. Greubel, Aug 28 2019
  • Mathematica
    Table[(9n+10)Binomial[n+9, 9]/10, {n, 0, 30}]
  • PARI
    vector(30, n, n--; (9*n+10)*binomial(n+9, 9)/10)
    
  • Sage
    [(9*n+10)*binomial(n+9,9)/10 for n in (0..30)]
    

Formula

G.f.: (1 + 8*x)/(1-x)^11.
a(n) = Sum_{i=0..n} (i+1)*A000581(i+8).
a(n+1) = 8*A001287(n+10) + A001287(n+11).

A054487 a(n) = (3*n+4)*binomial(n+7, 7)/4.

Original entry on oeis.org

1, 14, 90, 390, 1320, 3762, 9438, 21450, 45045, 88660, 165308, 294372, 503880, 833340, 1337220, 2089164, 3187041, 4758930, 6970150, 10031450, 14208480, 19832670, 27313650, 37153350, 49961925, 66475656, 87576984, 114316840
Offset: 0

Views

Author

Barry E. Williams, May 06 2000

Keywords

References

  • A. H. Beiler, Recreations in the Theory of Numbers, Dover, N.Y., 1964, pp. 122-125, 194-196.

Crossrefs

Cf. A034265.
Cf. A093563 ((6, 1) Pascal, column m=8).

Programs

  • GAP
    List([0..40], n-> (3*n+4)*Binomial(n+7, 7)/4 ); # G. C. Greubel, Jan 19 2020
  • Magma
    [((3*n+4)*Binomial(n+7,7))/4: n in [0..40]]; // Vincenzo Librandi, Jul 30 2014
    
  • Maple
    seq( (3*n+4)*binomial(n+7,7)/4, n=0..40); # G. C. Greubel, Jan 19 2020
  • Mathematica
    CoefficientList[Series[(1+5x)/(1-x)^9, {x,0,40}], x] (* Vincenzo Librandi, Jul 30 2014 *)
    Table[6*Binomial[n+8,8] -5*Binomial[n+7,7], {n,0,40}] (* G. C. Greubel, Jan 19 2020 *)
    LinearRecurrence[{9,-36,84,-126,126,-84,36,-9,1},{1,14,90,390,1320,3762,9438,21450,45045},30] (* Harvey P. Dale, Jul 19 2022 *)
  • PARI
    a(n) = (3*n+4)*binomial(n+7, 7)/4; \\ Michel Marcus, Sep 07 2017
    
  • Sage
    [(3*n+4)*binomial(n+7, 7)/4 for n in (0..40)] # G. C. Greubel, Jan 19 2020
    

Formula

G.f.: (1+5*x)/(1-x)^9.
From G. C. Greubel, Jan 19 2020: (Start)
a(n) = 6*binomial(n+8, 8) - 5*binomial(n+7, 7).
E.g.f.: (20160 +262080*x +635040*x^2 +540960*x^3 +205800*x^4 +38808*x^5 +3724*x^6 +172*x^7 +3*x^8)*exp(x)/20160. (End)
a(n) = 9*a(n-1)-36*a(n-2)+84*a(n-3)-126*a(n-4)+126*a(n-5)-84*a(n-6)+36*a(n-7)-9*a(n-8)+a(n-9). - Wesley Ivan Hurt, Jun 07 2021

Extensions

Corrected and extended by James Sellers, May 10 2000

A136526 Coefficients polynomials B(x, n) = ((1 + a + b)*x - c)*B(x, n-1) - a*b*B(x, n-2) with a = 3, b = 2, and c = 0.

Original entry on oeis.org

1, 0, 1, -6, 0, 6, 0, -42, 0, 36, 36, 0, -288, 0, 216, 0, 468, 0, -1944, 0, 1296, -216, 0, 4536, 0, -12960, 0, 7776, 0, -4104, 0, 38880, 0, -85536, 0, 46656, 1296, 0, -51840, 0, 311040, 0, -559872, 0, 279936, 0, 32400, 0, -544320, 0, 2379456, 0, -3639168, 0, 1679616
Offset: 0

Views

Author

Roger L. Bagula, Mar 23 2008

Keywords

Examples

			Triangle begins as:
     1;
     0,     1;
    -6,     0,      6;
     0,   -42,      0,    36;
    36,     0,   -288,     0,    216;
     0,   468,      0, -1944,      0,   1296;
  -216,     0,   4536,     0, -12960,      0,    7776;
     0, -4104,      0, 38880,      0, -85536,       0, 46656;
  1296,     0, -51840,     0, 311040,      0, -559872,     0, 279936;
		

References

  • Harry Hochstadt, The Functions of Mathematical Physics, Dover, New York, 1986, page 93

Crossrefs

Programs

  • Magma
    f:= func< n,k | k eq 0 select (-1)^Floor(n/2) else (-1)^Floor((n-k)/2)*6^Floor((k-1)/2)*(1/k)*(6*Floor((n-k)/2) +k)*Binomial(Floor((n-k)/2) +k-1, k-1) >;
    A136526:= func< n,k | ((n+k+1) mod 2)*6^Floor(n/2)*f(n,k) >;
    [A136526(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Sep 22 2022
    
  • Mathematica
    (* First program *)
    a= (b+1)/(b-1); c=0; b=2;
    B[x_, n_]:= B[x, n]= If[n<2, x^n, ((1+a+b)*x -c)*B[x, n-1] -a*b*B[x, n-2]];
    Table[CoefficientList[B[x,n], x], {n,0,10}]//Flatten
    (* Second program *)
    B[x_, n_]:= 6^(n/2)*(ChebyshevU[n, Sqrt[3/2]*x] -(5*x/Sqrt[6])*ChebyshevU[n-1, Sqrt[3/2]*x]);
    Table[CoefficientList[B[x, n], x]/6^Floor[n/2], {n,0,16}]//Flatten (* G. C. Greubel, Sep 22 2022 *)
  • SageMath
    def f(n,k):
        if (k==0): return (-1)^(n//2)
        else: return (-1)^((n-k)//2)*6^((k-1)//2)*(1/k)*(6*((n-k)//2) + k)*binomial(((n-k)//2) +k-1, k-1)
    def A136526(n,k): return ((n+k+1)%2)*6^(n//2)*f(n,k)
    flatten([[A136526(n,k) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Sep 22 2022

Formula

T(n, k) = coefficients of the polynomials defined by B(x, n) = ((1 + a + b)*x - c)*B(x, n - 1) - a*b*B(x, n - 2) with B(x, 0) = 1, B(x, 1) = x, a = 3, b = 2, and c = 0.
From G. C. Greubel, Sep 22 2022: (Start)
T(n, k) = coefficients of the polynomials defined by B(x, n) = 6^(n/2)*(ChebyshevU(n, sqrt(3/2)*x) - (5*x/sqrt(6))*ChebyshevU(n-1, sqrt(3/2)*x)).
T(n, k) = (1/2)*(1+(-1)^(n+k))*6^floor(n/2)*f(n, k), where f(n, k) = (-1)^floor((n -k)/2)*6^floor((k-1)/2)*(1/k)*(6*floor((n-k)/2) + k)*binomial(floor((n-k)/2) + k -1, k-1), for k >= 1, and (-1)^floor(n/2) for k = 0.
T(n, 0) = (1/2)*(1+(-1)^n)*(-6)^floor(n/2).
T(n, 1) = (1/2)*(1-(-1)^n)*(-6)^floor((n-1)/2)*A016921(floor((n-1)/2)), n >= 1.
T(n, 2) = (1/2)*(1+(-1)^n)*(-1)^(1+Floor((n+1)/2))*6^floor((n+1)/2)*A000567(floor( (n+1)/2)), n >= 2.
T(n, 3) = (1/2)*(1-(-1)^n)*(-6)^floor((n+1)/2)*A002414(floor((n-1)/2)), n >= 3.
T(n, 4) = (3/2)*(1+(-1)^n)*(-6)^floor((n+1)/2)*A002419(floor((n-1)/2)), n >= 4.
T(n, 5) = 18*(1-(-1)^n)*(-6)^floor((n-1)/2)*A051843(floor((n-3)/2)), n >= 5.
T(n, n) = 6^(n-1) + (5/6)*[n=0].
T(n, n-2) = -6*A081106(n-2), n >= 2.
Sum_{k=0..n} T(n, k) = -6*A030192(n-3), n>= 0.
Sum_{k=0..floor(n/2)} T(n-k, k) = [n=0] - 5*[n=2].
G.f.: (1 - 5*x*y)/(1 - 6*x*y + 6*y^2). (End)

Extensions

Edited by G. C. Greubel, Sep 22 2022
Showing 1-6 of 6 results.