A050485 Duplicate of A034265.
1, 13, 76, 300, 930, 2442, 5676, 12012, 23595, 43615, 76648, 129064, 209508
Offset: 0
This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
Triangle begins: 0; 0, 1; 0, 1, 3; 0, 1, 5, 6; 0, 1, 7, 14, 10; ... As a square array, [ 0 0 0 0 0 ...] [ 1 1 1 1 1 ...] [ 3 5 7 9 11 ...] [ 6 14 25 39 56 ...] [10 30 65 119 196 ...] [... ... ...]
A034261 := proc(n, k) binomial(n, n-k+1)*(k+(k-1)/(k-n-2)); end proc; # argument indices of the triangle
Flatten[Table[Binomial[n,n-k+1](k+(k-1)/(k-n-2)),{n,0,15},{k,0,n}]] (* Harvey P. Dale, Jan 11 2013 *)
f(h,k)=binomial(h+k,k+1)*(k*h+h+1)/(k+2)
tabl(nn) = for (n=0, nn, for (k=0, n, print1(binomial(n, n-k+1)*(k+(k-1)/(k-n-2)), ", ")); print()); \\ Michel Marcus, Mar 20 2015
Triangle begins 1; 6, 1; 6, 7, 1; 6, 13, 8, 1; 6, 19, 21, 9, 1; 6, 25, 40, 30, 10, 1; ...
a093563 n k = a093563_tabl !! n !! k a093563_row n = a093563_tabl !! n a093563_tabl = [1] : iterate (\row -> zipWith (+) ([0] ++ row) (row ++ [0])) [6, 1] -- Reinhard Zumkeller, Aug 31 2014
lim = 11; s = Series[(1 + 5*x)/(1 - x)^(m + 1), {x, 0, lim}]; t = Table[ CoefficientList[s, x], {m, 0, lim}]; Flatten[ Table[t[[j - k + 1, k]], {j, lim + 1}, {k, j, 1, -1}]] (* Jean-François Alcover, Sep 16 2011, after g.f. *)
from math import comb, isqrt def A093563(n): return comb(r:=(m:=isqrt(k:=n+1<<1))-(k<=m*(m+1)),a:=n-comb(r+1,2))*(r+5*(r-a))//r if n else 1 # Chai Wah Wu, Nov 12 2024
List([0..30], n-> (9*n+10)*Binomial(n+9,9)/10); # G. C. Greubel, Aug 28 2019
[(9*n+10)*Binomial(n+9,9)/10: n in [0..30]];
seq((9*n+10)*binomial(n+9,9)/10, n=0..30); # G. C. Greubel, Aug 28 2019
Table[(9n+10)Binomial[n+9, 9]/10, {n, 0, 30}]
vector(30, n, n--; (9*n+10)*binomial(n+9, 9)/10)
[(9*n+10)*binomial(n+9,9)/10 for n in (0..30)]
List([0..40], n-> (3*n+4)*Binomial(n+7, 7)/4 ); # G. C. Greubel, Jan 19 2020
[((3*n+4)*Binomial(n+7,7))/4: n in [0..40]]; // Vincenzo Librandi, Jul 30 2014
seq( (3*n+4)*binomial(n+7,7)/4, n=0..40); # G. C. Greubel, Jan 19 2020
CoefficientList[Series[(1+5x)/(1-x)^9, {x,0,40}], x] (* Vincenzo Librandi, Jul 30 2014 *) Table[6*Binomial[n+8,8] -5*Binomial[n+7,7], {n,0,40}] (* G. C. Greubel, Jan 19 2020 *) LinearRecurrence[{9,-36,84,-126,126,-84,36,-9,1},{1,14,90,390,1320,3762,9438,21450,45045},30] (* Harvey P. Dale, Jul 19 2022 *)
a(n) = (3*n+4)*binomial(n+7, 7)/4; \\ Michel Marcus, Sep 07 2017
[(3*n+4)*binomial(n+7, 7)/4 for n in (0..40)] # G. C. Greubel, Jan 19 2020
Triangle begins as: 1; 0, 1; -6, 0, 6; 0, -42, 0, 36; 36, 0, -288, 0, 216; 0, 468, 0, -1944, 0, 1296; -216, 0, 4536, 0, -12960, 0, 7776; 0, -4104, 0, 38880, 0, -85536, 0, 46656; 1296, 0, -51840, 0, 311040, 0, -559872, 0, 279936;
f:= func< n,k | k eq 0 select (-1)^Floor(n/2) else (-1)^Floor((n-k)/2)*6^Floor((k-1)/2)*(1/k)*(6*Floor((n-k)/2) +k)*Binomial(Floor((n-k)/2) +k-1, k-1) >; A136526:= func< n,k | ((n+k+1) mod 2)*6^Floor(n/2)*f(n,k) >; [A136526(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Sep 22 2022
(* First program *) a= (b+1)/(b-1); c=0; b=2; B[x_, n_]:= B[x, n]= If[n<2, x^n, ((1+a+b)*x -c)*B[x, n-1] -a*b*B[x, n-2]]; Table[CoefficientList[B[x,n], x], {n,0,10}]//Flatten (* Second program *) B[x_, n_]:= 6^(n/2)*(ChebyshevU[n, Sqrt[3/2]*x] -(5*x/Sqrt[6])*ChebyshevU[n-1, Sqrt[3/2]*x]); Table[CoefficientList[B[x, n], x]/6^Floor[n/2], {n,0,16}]//Flatten (* G. C. Greubel, Sep 22 2022 *)
def f(n,k): if (k==0): return (-1)^(n//2) else: return (-1)^((n-k)//2)*6^((k-1)//2)*(1/k)*(6*((n-k)//2) + k)*binomial(((n-k)//2) +k-1, k-1) def A136526(n,k): return ((n+k+1)%2)*6^(n//2)*f(n,k) flatten([[A136526(n,k) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Sep 22 2022
Comments