cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A034676 Sum of squares of unitary divisors of n.

Original entry on oeis.org

1, 5, 10, 17, 26, 50, 50, 65, 82, 130, 122, 170, 170, 250, 260, 257, 290, 410, 362, 442, 500, 610, 530, 650, 626, 850, 730, 850, 842, 1300, 962, 1025, 1220, 1450, 1300, 1394, 1370, 1810, 1700, 1690, 1682, 2500, 1850, 2074, 2132, 2650, 2210, 2570, 2402, 3130
Offset: 1

Views

Author

Keywords

Comments

Also sum of unitary divisors of n^2. - Vladeta Jovovic, Nov 13 2001
If b(n,k)=sum of k-th powers of unitary divisors of n then b(n,k) is multiplicative with b(p^e,k)=p^(k*e)+1. - Vladeta Jovovic, Nov 13 2001

Crossrefs

Programs

  • Haskell
    a034676 = sum . map (^ 2) . a077610_row
    -- Reinhard Zumkeller, Feb 12 2012
  • Maple
    A034676 := proc(n)
        a :=1 ;
        for pe in ifactors(n)[2] do
            p := op(1,pe) ;
            e := op(2,pe) ;
            a := a*(p^(2*e)+1) ;
        end do:
        a ;
    end proc:
    seq(A034676(n),n=1..40) ; # R. J. Mathar, Jul 12 2024
  • Mathematica
    f[n_] := Block[{d = Divisors@ n}, Plus @@ (Select[d, GCD[#, n/#] == 1 &]^2)]; Array[f, 50] (* Robert G. Wilson v, Mar 04 2011 *)
    f[p_, e_] := p^(2*e)+1; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Sep 14 2020 *)
  • PARI
    A034676_vec(len)={
            a000012=direuler(p=2,len, 1/(1-X)) ;
            a000290=direuler(p=2,len, 1/(1-p^2*X)) ;
            a000290x=direuler(p=2,len, 1-p^2*X^2) ;
            dirmul(dirmul(a000012,a000290),a000290x)
    }
    A034676_vec(70) ; /* via D.g.f., R. J. Mathar, Mar 05 2011 */
    

Formula

Multiplicative with a(p^e)=p^(2*e)+1.
Dirichlet g.f.: zeta(s)*zeta(s-2)/zeta(2*s-2). - R. J. Mathar, Mar 04 2011
Sum_{k=1..n} a(k) ~ 30 * Zeta(3) * n^3 / Pi^4. - Vaclav Kotesovec, Jan 11 2019
Sum_{k>=1} 1/a(k) = 1.5594563610641446770272272038182777336348840179730233519185104374159616326... - Vaclav Kotesovec, Sep 20 2020