A034676 Sum of squares of unitary divisors of n.
1, 5, 10, 17, 26, 50, 50, 65, 82, 130, 122, 170, 170, 250, 260, 257, 290, 410, 362, 442, 500, 610, 530, 650, 626, 850, 730, 850, 842, 1300, 962, 1025, 1220, 1450, 1300, 1394, 1370, 1810, 1700, 1690, 1682, 2500, 1850, 2074, 2132, 2650, 2210, 2570, 2402, 3130
Offset: 1
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 1..10000
- Eric Weisstein's World of Mathematics, Unitary Divisor Function.
- Wikipedia, Unitary divisor.
Programs
-
Haskell
a034676 = sum . map (^ 2) . a077610_row -- Reinhard Zumkeller, Feb 12 2012
-
Maple
A034676 := proc(n) a :=1 ; for pe in ifactors(n)[2] do p := op(1,pe) ; e := op(2,pe) ; a := a*(p^(2*e)+1) ; end do: a ; end proc: seq(A034676(n),n=1..40) ; # R. J. Mathar, Jul 12 2024
-
Mathematica
f[n_] := Block[{d = Divisors@ n}, Plus @@ (Select[d, GCD[#, n/#] == 1 &]^2)]; Array[f, 50] (* Robert G. Wilson v, Mar 04 2011 *) f[p_, e_] := p^(2*e)+1; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Sep 14 2020 *)
-
PARI
A034676_vec(len)={ a000012=direuler(p=2,len, 1/(1-X)) ; a000290=direuler(p=2,len, 1/(1-p^2*X)) ; a000290x=direuler(p=2,len, 1-p^2*X^2) ; dirmul(dirmul(a000012,a000290),a000290x) } A034676_vec(70) ; /* via D.g.f., R. J. Mathar, Mar 05 2011 */
Formula
Multiplicative with a(p^e)=p^(2*e)+1.
Dirichlet g.f.: zeta(s)*zeta(s-2)/zeta(2*s-2). - R. J. Mathar, Mar 04 2011
Sum_{k=1..n} a(k) ~ 30 * Zeta(3) * n^3 / Pi^4. - Vaclav Kotesovec, Jan 11 2019
Sum_{k>=1} 1/a(k) = 1.5594563610641446770272272038182777336348840179730233519185104374159616326... - Vaclav Kotesovec, Sep 20 2020
Comments