cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 10 results.

A254520 Möbius transform of A034676.

Original entry on oeis.org

1, 4, 9, 12, 25, 36, 49, 48, 72, 100, 121, 108, 169, 196, 225, 192, 289, 288, 361, 300, 441, 484, 529, 432, 600, 676, 648, 588, 841, 900, 961, 768, 1089, 1156, 1225, 864, 1369, 1444, 1521, 1200, 1681, 1764, 1849, 1452, 1800, 2116, 2209, 1728, 2352, 2400
Offset: 1

Views

Author

Álvar Ibeas, Jan 31 2015

Keywords

Comments

The Dirichlet convolution of a(n) and sigma(n) is sigma(n^2).

Crossrefs

Programs

  • PARI
    a(n) = n^2*sumdiv(n, d, if (issquare(d), moebius(sqrtint(d))/d)); \\ Michel Marcus, Feb 10 2015

Formula

a(n) = n^2 * Sum_{d^2 | n} (moebius(d) / d^2).
Multiplicative with a(p) = p^2; a(p^e) = p^(2e) - p^(2e-2), for e > 1.
Dirichlet g.f.: zeta(s-2) / zeta(2s-2).
Sum_{k=1..n} a(k) ~ 30 * n^3 / Pi^4. - Vaclav Kotesovec, Jan 11 2019
Sum_{k>=1} 1/a(k) = Product_{primes p} (1 + 1/p^2 + 1/(p^2 - 1)^2) = 1.681923034881403168503816690236967736500606659628336043348190538886262268... - Vaclav Kotesovec, Sep 20 2020
a(n) = n*A063659(n). - Ridouane Oudra, Jul 26 2025

A229996 For every positive integer m, let u(m) = (d(1),d(2),...,d(k)) be the unitary divisors of m. The sequence (a(n)) consists of successive numbers m which d(k)/d(1) + d(k-1)/d(2) + ... + d(k)/d(1) is an integer.

Original entry on oeis.org

1, 10, 65, 130, 260, 340, 1105, 1972, 2210, 4420, 8840, 9860, 15650, 20737, 32045, 41474, 44200, 51272, 55250, 64090, 75140, 82948, 103685, 128180, 207370, 207553, 221000, 256360, 352529, 414740, 415106, 512720, 532100, 705058, 759025, 813800, 829480, 830212
Offset: 1

Views

Author

Clark Kimberling, Oct 31 2013

Keywords

Comments

The integer sums d(k)/d(1) + d(k-1)/d(2) + ... + d(k)/d(1) are given by A229999. - Clark Kimberling, Jun 16 2018
Also numbers m such that the sum of the squares of the unitary divisors of m is divisible by m (the unitary version of A046762). - Amiram Eldar, Jun 16 2018

Examples

			The first 10 sums: 1, 5/2, 10/3, 17/4, 26/5, 25/3, 50/7, 65/8, 82/9, 13, so that a(1) = 1 and a(10) = 13.
		

Crossrefs

Programs

  • Mathematica
    z = 1000; r[n_] := Select[Divisors[n], GCD[#, n/#] == 1 &]; k[n_] := Length[r[n]];
    t[n_] := Table[r[n][[k[n] + 1 - i]]/r[n][[k[1] + i - 1]], {i, 1, k[n]}];
    s = Table[Plus @@ t[n], {n, 1, z}]; a[n_] := If[IntegerQ[s[[n]]], 1, 0]; u = Table[a[n], {n, 1, z}]; Flatten[Position[u, 1]]  (* A229996 *)
    usigma2[n_] :=  If[n == 1, 1, Times @@ (1 + Power @@@ FactorInteger[n]^2)]; seqQ[n_] := Divisible[usigma2[n], n]; Select[Range[10^6], seqQ] (* Amiram Eldar, Jun 16 2018 *)
  • PARI
    is(n) = {my(f = factor(n)); !(prod(i = 1, #f~, f[i,1]^(2*f[i,2]) + 1) % n);} \\ Amiram Eldar, Jun 16 2024

Extensions

Definition corrected by Clark Kimberling, Jun 16 2018

A366535 The sum of unitary divisors of the exponentially odd numbers (A268335).

Original entry on oeis.org

1, 3, 4, 6, 12, 8, 9, 18, 12, 14, 24, 24, 18, 20, 32, 36, 24, 36, 42, 28, 30, 72, 32, 33, 48, 54, 48, 38, 60, 56, 54, 42, 96, 44, 72, 48, 72, 54, 84, 72, 72, 80, 90, 60, 62, 96, 84, 144, 68, 96, 144, 72, 74, 114, 96, 168, 80, 126, 84, 108, 132, 120, 108, 90, 112
Offset: 1

Views

Author

Amiram Eldar, Oct 12 2023

Keywords

Crossrefs

Programs

  • Mathematica
    s[n_] := Module[{f = FactorInteger[n], e}, e = f[[;;, 2]]; If[AllTrue[e, OddQ], Times @@ (1 + Power @@@ f), Nothing]]; s[1] = 1; Array[s, 100]
  • PARI
    lista(max) = for(k = 1, max, my(f = factor(k), e = f[, 2], isexpodd = 1); for(i = 1, #e, if(!(e[i] % 2), isexpodd = 0; break)); if(isexpodd, print1(prod(i = 1, #e, 1 + f[i, 1]^e[i]), ", ")));

Formula

a(n) = A034448(A268335(n)).
Sum_{k=1..n} a(k) ~ c * n^2 / 2, where c = (zeta(4)/d^2) * Product_{p prime} (1 - 2/p^4 + 1/p^5) = 1.92835521961603199612..., d = A065463 is the asymptotic density of the exponentially odd numbers.
The asymptotic mean of the unitary abundancy index of the exponentially odd numbers: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k)/A268335(k) = c * d = 1.35841479521454692063... .

A286880 Square array A(n,k), n>=0, k>=1, read by antidiagonals, where row n is the sum of n-th powers of unitary divisors of k (divisors d such that gcd(d, k/d) = 1).

Original entry on oeis.org

1, 2, 1, 2, 3, 1, 2, 4, 5, 1, 2, 5, 10, 9, 1, 4, 6, 17, 28, 17, 1, 2, 12, 26, 65, 82, 33, 1, 2, 8, 50, 126, 257, 244, 65, 1, 2, 9, 50, 252, 626, 1025, 730, 129, 1, 4, 10, 65, 344, 1394, 3126, 4097, 2188, 257, 1, 2, 18, 82, 513, 2402, 8052, 15626, 16385, 6562, 513, 1, 4, 12, 130, 730, 4097, 16808, 47450, 78126, 65537, 19684, 1025, 1
Offset: 0

Views

Author

Ilya Gutkovskiy, Aug 02 2017

Keywords

Comments

For row r > 0, Sum_{k=1..n} A(r,k) ~ zeta(r+1) * n^(r+1) / ((r+1) * zeta(r+2)). - Vaclav Kotesovec, May 20 2021

Examples

			Square array begins:
1,   2,    2,     2,     2,     4,  ...
1,   3,    4,     5,     6,    12,  ...
1,   5,   10,    17,    26,    50,  ...
1,   9,   28,    65,   126,   252,  ...
1,  17,   82,   257,   626,  1394,  ...
1,  33,  244,  1025,  3126,  8052,  ...
		

Crossrefs

Formula

Dirichlet g.f. of row n: zeta(s)*zeta(s-n)/zeta(2*s-n).

A366537 The sum of unitary divisors of the cubefree numbers (A004709).

Original entry on oeis.org

1, 3, 4, 5, 6, 12, 8, 10, 18, 12, 20, 14, 24, 24, 18, 30, 20, 30, 32, 36, 24, 26, 42, 40, 30, 72, 32, 48, 54, 48, 50, 38, 60, 56, 42, 96, 44, 60, 60, 72, 48, 50, 78, 72, 70, 54, 72, 80, 90, 60, 120, 62, 96, 80, 84, 144, 68, 90, 96, 144, 72, 74, 114, 104, 100, 96
Offset: 1

Views

Author

Amiram Eldar, Oct 12 2023

Keywords

Crossrefs

Programs

  • Mathematica
    s[n_] := Module[{f = FactorInteger[n], e}, e = f[[;;, 2]]; If[AllTrue[e, # < 3 &], Times @@ (1 + Power @@@ f), Nothing]]; s[1] = 1; Array[s, 100]
  • PARI
    lista(max) = for(k = 1, max, my(f = factor(k), e = f[, 2], iscubefree = 1); for(i = 1, #e, if(e[i] > 2, iscubefree = 0; break)); if(iscubefree, print1(prod(i = 1, #e, 1 + f[i, 1]^e[i]), ", ")));
    
  • Python
    from sympy.ntheory.factor_ import udivisor_sigma
    from sympy import mobius, integer_nthroot
    def A366537(n):
        def f(x): return n+x-sum(mobius(k)*(x//k**3) for k in range(1, integer_nthroot(x,3)[0]+1))
        m, k = n, f(n)
        while m != k:
            m, k = k, f(k)
        return udivisor_sigma(m) # Chai Wah Wu, Aug 05 2024

Formula

a(n) = A034448(A004709(n)).
Sum_{k=1..n} a(k) ~ c * n^2 / 2, where c = zeta(3)^2 * Product_{p prime} (1 + 1/p^2 - 2/p^3 + 1/p^4 - 1/p^5) = 1.665430860774244601005... .
The asymptotic mean of the unitary abundancy index of the cubefree numbers: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k)/A004709(k) = c / zeta(3) = 1.38548421160152785073... .

A366539 The sum of unitary divisors of the exponentially 2^n-numbers (A138302).

Original entry on oeis.org

1, 3, 4, 5, 6, 12, 8, 10, 18, 12, 20, 14, 24, 24, 17, 18, 30, 20, 30, 32, 36, 24, 26, 42, 40, 30, 72, 32, 48, 54, 48, 50, 38, 60, 56, 42, 96, 44, 60, 60, 72, 48, 68, 50, 78, 72, 70, 54, 72, 80, 90, 60, 120, 62, 96, 80, 84, 144, 68, 90, 96, 144, 72, 74, 114, 104
Offset: 1

Views

Author

Amiram Eldar, Oct 12 2023

Keywords

Comments

Also the sum of infinitary divisors of the terms of A138302, since A138302 is also the sequence of numbers whose sets of unitary divisors (A077610) and infinitary divisors (A077609) coincide.

Crossrefs

Programs

  • Mathematica
    s[n_] := Module[{f = FactorInteger[n], e}, e = f[[;;, 2]]; If[AllTrue[e, # == 2^IntegerExponent[#, 2] &], Times @@ (1 + Power @@@ f), Nothing]]; s[1] = 1; Array[s, 100]
  • PARI
    lista(max) = for(k = 1, max, my(f = factor(k), e = f[, 2], is = 1); for(i = 1, #e, if(e[i] >> valuation(e[i], 2) > 1, is = 0; break)); if(is, print1(prod(i = 1, #e, 1 + f[i, 1]^e[i]), ", ")));

Formula

a(n) = A034448(A138302(n)).
a(n) = A049417(A138302(n)).
Sum_{k=1..n} a(k) ~ c * n^2 / 2, where c = (1/d^2) * Product_{p prime} f(1/p) = 1.58107339851877782285..., d = A271727 is the asymptotic density of A138302, and f(x) = 1 + x^2 + 2 * Sum_{k>=2} (x^(2^k)-x^(2^k+1)).
The asymptotic mean of the unitary abundancy index of A138302: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k)/A138302(k) = c * d = 1.37948208055913856387... .

A374538 a(n) is the sum of the squares of the unitary divisors of n that are exponentially odd numbers (A268335).

Original entry on oeis.org

1, 5, 10, 1, 26, 50, 50, 65, 1, 130, 122, 10, 170, 250, 260, 1, 290, 5, 362, 26, 500, 610, 530, 650, 1, 850, 730, 50, 842, 1300, 962, 1025, 1220, 1450, 1300, 1, 1370, 1810, 1700, 1690, 1682, 2500, 1850, 122, 26, 2650, 2210, 10, 1, 5, 2900, 170, 2810, 3650, 3172
Offset: 1

Views

Author

Amiram Eldar, Jul 11 2024

Keywords

Comments

The number of unitary divisors of n that are exponentially odd is A055076(n) and their sum is A358346(n).

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := 1 + If[OddQ[e], p^(2*e), 0]; a[n_] := Times @@ f @@@ FactorInteger[n]; a[1] = 1; Array[a, 100]
  • PARI
    a(n) = {my(f = factor(n)); prod(i = 1, #f~, 1 + if(f[i, 2]%2,  f[i, 1]^(2*f[i, 2]), 0));}

Formula

a(n) = A034676(A350389(n)).
a(n) >= 1 with equality if and only if n is a square (A000290).
a(n) <= A374537(n) with equality if and only if n is squarefree (A005117).
Multiplicative with a(p^e) = p^(2*e) + 1 if e is odd, and 1 otherwise.
Dirichlet g.f.: zeta(s) * zeta(2*s-4) * Product_{p prime} (1 + 1/p^(s-2) - 1/p^(2*s-4) - 1/p^(2*s-2)).
Sum_{k=1..n} a(k) ~ c * n^3 / 3, where c = zeta(2) * zeta(3) * Product_{p prime} (1 - 2/p^2 + 1/p^3 - 1/p^4 + 1/p^5) = 0.79482441214759383925... .

A130106 A051731 * diagonalized matrix of A063659.

Original entry on oeis.org

1, 1, 2, 1, 0, 3, 1, 2, 0, 3, 1, 0, 0, 0, 5, 1, 2, 3, 0, 0, 6, 1, 0, 0, 0, 0, 0, 7, 1, 2, 0, 3, 0, 0, 0, 6, 1, 0, 3, 0, 0, 0, 0, 0, 8, 1, 2, 0, 0, 5, 0, 0, 0, 0, 10, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 11, 1, 2, 3, 3, 0, 6, 0, 0, 0, 0, 0, 9, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 13, 1, 2, 0, 0, 0, 0, 7, 0, 0, 0, 0, 0, 0, 14
Offset: 1

Views

Author

Gary W. Adamson, May 07 2007

Keywords

Comments

Right border = A063659, (1, 2, 3, 3, 5, 6, 7, 6, 8, 10, ...), the Moebius transform of A001615: (1, 3, 4, 6, 6, 12, 8, 12, 12, ...).
A130106 * (1, 2, 3, ...) = A034676: (1, 5, 10, 17, 26, 50, 50, ...).
A034676^(-1) * (1,2,3,...) = 1/1, 1/2, 2/3, 2/3, 4/5, 2/6, 6/7, 4/6, 6/8, 4/10, ...; where the numerators = phi(n), A000010: (1, 1, 2, 2, 4, 2, 6, 4, ...); and the denominators = A063659, the right border of the triangle: (1, 2, 3, 3, 5, 6, 7, 8, 10, ...).

Examples

			First few rows of the triangle:
  1;
  1, 2;
  1, 0, 3;
  1, 2, 0, 3;
  1, 0, 0, 0, 5;
  1, 2, 3, 0, 0, 6;
  1, 0, 0, 0, 0, 0, 7,
  1, 2, 0, 3, 0, 0, 0, 6;
  1, 0, 3, 0, 0, 0, 0, 0, 8;
  ...
		

Crossrefs

Cf. A063659, A001615 (row sums), A051731, A000010.

Programs

  • Mathematica
    m = 14;
    A051731 = Table[If[Mod[n, k] == 0, 1, 0], {n, m}, {k, m}];
    A063659 = Table[Sum[MoebiusMu[GCD[n, k]]^2, {k, n}], {n, m}] // DiagonalMatrix;
    M = A051731.A063659;
    Table[M[[n, k]], {n, m}, {k, n}] // Flatten (* Jean-François Alcover, Jan 18 2020 *)

Formula

Inverse Moebius transform of an infinite lower triangular matrix with A063659, (1, 2, 3, 3, 5, 6, 7, 6, 8, 10, ...) in the main diagonal and the rest zeros.

Extensions

More terms from Jean-François Alcover, Jan 18 2020

A374539 The sum of the squares of the infinitary divisors of n.

Original entry on oeis.org

1, 5, 10, 17, 26, 50, 50, 85, 82, 130, 122, 170, 170, 250, 260, 257, 290, 410, 362, 442, 500, 610, 530, 850, 626, 850, 820, 850, 842, 1300, 962, 1285, 1220, 1450, 1300, 1394, 1370, 1810, 1700, 2210, 1682, 2500, 1850, 2074, 2132, 2650, 2210, 2570, 2402, 3130, 2900
Offset: 1

Views

Author

Amiram Eldar, Jul 11 2024

Keywords

Comments

Also the sum of the infinitary divisors of n^2.

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := p^(2^Position[Reverse@IntegerDigits[e, 2], ?(# == 1 &)]); a[1] = 1; a[n] := Times @@ (Flatten@(f @@@ FactorInteger[n]) + 1); Array[a, 100]
  • PARI
    a(n) = {my(f = factor(n), b); prod(i = 1, #f~, b = binary(2 * f[i, 2]); prod(k=1, #b, if(b[k], 1+f[i, 1]^(2^(#b-k)), 1)));}
    
  • Python
    from math import prod
    from sympy import factorint
    def A374539(n): return prod(p**(1<Chai Wah Wu, Jul 11 2024

Formula

a(n) = A049417(n^2).
a(n) <= A001157(n), with equality if and only if n is in A036537.
Multiplicative with a(p^e) = Product{k>=1, e_k=1} (p^(2^(k+1)) + 1), where e = Sum_{k} e_k * 2^k is the binary representation of e, i.e., e_k is bit k of e.
Sum_{k=1..n} a(k) ~ c * n^3 / 3, where c = Product_{P} (1 + 1/(P^2*(P+1))) = 1.14142906130350119631..., and P are numbers of the form p^(2^k) where p is prime and k >= 0 (A050376).

A384452 a(n) is the sum of squares of the unitary divisors of n!.

Original entry on oeis.org

1, 5, 50, 650, 16900, 547924, 27396200, 1746641000, 139773881000, 13460683752200, 1642203417768400, 236441876606410000, 40195119023089700000, 7723888546922636420000, 1735183690969722609168800, 444206919394766468845892000, 128820006624482275965308680000, 41737604550102658693597600532800
Offset: 1

Views

Author

Darío Clavijo, Jun 02 2025

Keywords

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := p^(2*e)+1; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n!]; Array[a, 18] (* Amiram Eldar, Jun 02 2025 *)
  • PARI
    row(n) = {my(d = divisors(n)); select(x->(gcd(x, n/x)==1), d); } \\ A077610
    a(n) = norml2(row(n!)); \\ Michel Marcus, Jun 02 2025
  • Python
    from sympy import nextprime
    def f(n,p):
      if n==0: return 0
      return f(n//p,p) + n//p
    def a(n):
      s,p = 1, 2
      while p<=n:
        s *= p**(f(n,p)<<1)+1
        p = nextprime(p)
      return s
    print([a(n) for n in range(1, 19)])
    

Formula

a(n) = Sum_{d|n!} (d^2 if gcd(d,n!//d) = 1).
a(n) = Product_{p <= n, p prime} (p^(2*f(n,p)))+1 with f(n,p) = f(floor(n/p)) + floor(n/p) and f(0,p) = 0 where f(n,p) is equivalent to the Legendre formula.
a(n) = A034676(n!).
Showing 1-10 of 10 results.