cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A034677 Sum of cubes of unitary divisors of n.

Original entry on oeis.org

1, 9, 28, 65, 126, 252, 344, 513, 730, 1134, 1332, 1820, 2198, 3096, 3528, 4097, 4914, 6570, 6860, 8190, 9632, 11988, 12168, 14364, 15626, 19782, 19684, 22360, 24390, 31752, 29792, 32769, 37296, 44226, 43344, 47450, 50654, 61740, 61544, 64638, 68922, 86688, 79508
Offset: 1

Views

Author

Keywords

Comments

A unitary divisor of n is a divisor d such that gcd(d,n/d)=1.

Examples

			The unitary divisors of 6 are 1, 2, 3 and 6, so a(6) = 252.
		

Crossrefs

Row n=3 of A286880.

Programs

  • Mathematica
    scud[n_]:=Total[Select[Divisors[n],CoprimeQ[#,n/#]&]^3]; Array[scud,40] (* Harvey P. Dale, Oct 16 2016 *)
    f[p_, e_] := p^(3*e)+1; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Sep 14 2020 *)
  • PARI
    A034677_vec(len)={
            a000012=direuler(p=2,len, 1/(1-X)) ;
            a000578=direuler(p=2,len, 1/(1-p^3*X)) ;
            a000578x=direuler(p=2,len, 1-p^3*X^2) ;
            dirmul(dirmul(a000012,a000578),a000578x)
    }
    A034677_vec(70) /* via D.g.f., R. J. Mathar, Mar 05 2011 */

Formula

Dirichlet g.f.: zeta(s)*zeta(s-3)/zeta(2s-3). - R. J. Mathar, Mar 04 2011
If n = Product (p_j^k_j) then a(n) = Product (1 + p_j^(3*k_j)). - Ilya Gutkovskiy, Nov 04 2018
Sum_{k=1..n} a(k) ~ Pi^4 * n^4 / (360 * Zeta(5)). - Vaclav Kotesovec, Feb 01 2019