A034696 Dirichlet convolution of primes (A000040) with themselves.
4, 12, 20, 37, 44, 82, 68, 118, 117, 182, 124, 296, 164, 274, 298, 375, 236, 512, 268, 612, 462, 502, 332, 950, 509, 650, 642, 924, 436, 1310, 508, 1108, 858, 910, 970, 1831, 628, 1054, 1078, 1942, 716, 2034, 764, 1680, 1764, 1294, 844, 2968, 1197, 2136, 1522
Offset: 1
Keywords
Links
- Seiichi Manyama, Table of n, a(n) for n = 1..10000
Crossrefs
Cf. A000040.
Programs
-
Mathematica
Table[DivisorSum[n, Prime[n/#]*Prime[#] &], {n, 80}] (* Wesley Ivan Hurt, Jun 22 2024 *)
-
PARI
a(n) = sumdiv(n, d, prime(d)*prime(n/d)); \\ Michel Marcus, Mar 11 2018
-
Python
from sympy import divisors, prime, primerange def dirichlet(f, g, n): return sum(f[d] * g[n//d] for d in divisors(n)) def aupton(terms): p = [0] + list(primerange(2, prime(terms)+1)) return [dirichlet(p, p, k) for k in range(1, terms+1)] print(aupton(51)) # Michael S. Branicky, Apr 12 2021
Formula
a(n) = Sum_{d|n} prime(d)*prime(n/d). - Ilya Gutkovskiy, Mar 11 2018