cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A325257 a(1) = 1; a(n) = Sum_{d|n, d

Original entry on oeis.org

1, 3, 5, 16, 11, 43, 17, 88, 48, 95, 31, 320, 41, 145, 157, 486, 59, 554, 67, 696, 243, 265, 83, 2204, 218, 347, 458, 1062, 109, 1961, 127, 2668, 447, 493, 523, 5044, 157, 565, 577, 4780, 179, 3021, 191, 1938, 1998, 697, 211, 14590, 516, 2538, 823, 2526, 241, 6622, 939
Offset: 1

Views

Author

Ilya Gutkovskiy, Sep 05 2019

Keywords

Crossrefs

Cf. A000040, A007445, A008966 (parity of a(n)), A034696.

Programs

  • Magma
    sol:=[1]; for n in [2..60] do Append(~sol,&+[NthPrime(Floor(n/d))*sol[d]:d in Set(Divisors(n)) diff {n}]); end for; sol; // Marius A. Burtea, Sep 05 2019
  • Mathematica
    a[n_] := If[n == 1, n, Sum[If[d < n, Prime[n/d] a[d], 0], {d, Divisors[n]}]]; Table[a[n], {n, 1, 55}]
    nmax = 55; A[] = 0; Do[A[x] = x + Sum[Prime[k] A[x^k], {k, 2, nmax}] + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x], x] // Rest
  • PARI
    seq(n)={my(v=vector(n)); v[1]=1; for(n=2, #v, v[n] = sumdiv(n, d, v[d]*prime(n/d))); v} \\ Andrew Howroyd, Sep 05 2019
    

Formula

G.f. A(x) satisfies: A(x) = x + Sum_{k>=2} prime(k) * A(x^k).

A325891 a(1) = 1; a(n) = -Sum_{d|n, d

Original entry on oeis.org

1, -3, -5, 2, -11, 17, -17, -4, 2, 37, -31, -24, -41, 59, 63, 2, -59, -18, -67, -40, 97, 107, -83, 64, 24, 145, 2, -70, -109, -245, -127, 12, 173, 215, 225, 110, -157, 239, 243, 96, -179, -401, -191, -122, -46, 299, -211, -70, 62, -98, 357, -166, -241, 30, 425
Offset: 1

Views

Author

Ilya Gutkovskiy, Sep 07 2019

Keywords

Crossrefs

Programs

  • Magma
    sol:=[1]; for n in [2..55] do Append(~sol,-&+[NthPrime(Floor(n/d))*sol[d]:d in Set(Divisors(n)) diff {n}]); end for; sol; // Marius A. Burtea, Sep 08 2019
  • Mathematica
    a[n_] := If[n == 1, n, -Sum[If[d < n, Prime[n/d] a[d], 0], {d, Divisors[n]}]]; Table[a[n], {n, 1, 55}]
    nmax = 55; A[] = 0; Do[A[x] = x - Sum[Prime[k] A[x^k], {k, 2, nmax}] + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x], x] // Rest
  • PARI
    a(n) = if (n==1, 1, -sumdiv(n, d, if (d Michel Marcus, Sep 08 2019
    

Formula

G.f. A(x) satisfies: A(x) = x - Sum_{k>=2} prime(k) * A(x^k).
Showing 1-2 of 2 results.