A034699 Largest prime power factor of n.
1, 2, 3, 4, 5, 3, 7, 8, 9, 5, 11, 4, 13, 7, 5, 16, 17, 9, 19, 5, 7, 11, 23, 8, 25, 13, 27, 7, 29, 5, 31, 32, 11, 17, 7, 9, 37, 19, 13, 8, 41, 7, 43, 11, 9, 23, 47, 16, 49, 25, 17, 13, 53, 27, 11, 8, 19, 29, 59, 5, 61, 31, 9, 64, 13, 11, 67, 17, 23, 7, 71, 9, 73, 37, 25, 19, 11, 13, 79
Offset: 1
Links
- Antti Karttunen, Table of n, a(n) for n = 1..65537 (first 1000 terms from T. D. Noe)
- Hagen von Eitzen, Least k to distinguish f^n = f on {1,...,k} from f^e = f for every 1 < e < n is largest prime power factor of n-1?, Math Stack Exchange.
Crossrefs
Programs
-
Haskell
a034699 = last . a210208_row -- Reinhard Zumkeller, Mar 18 2012, Feb 14 2012
-
Mathematica
f[n_] := If[n == 1, 1, Max[ #[[1]]^#[[2]] & /@ FactorInteger@n]]; Array[f, 79] (* Robert G. Wilson v, Sep 02 2006 *) Array[Max[Power @@@ FactorInteger@ #] &, 79] (* Michael De Vlieger, Jul 26 2018 *)
-
PARI
a(n) = if(1==n,n,my(f=factor(n)); vecmax(vector(#f[, 1], i, f[i, 1]^f[i, 2]))); \\ Charles R Greathouse IV, Nov 20 2012, check for a(1) added by Antti Karttunen, Aug 06 2018
-
PARI
A034699(n) = if(1==n,n,fordiv(n, d, if(isprimepower(n/d), return(n/d)))); \\ Antti Karttunen, Aug 06 2018
-
Python
from sympy import factorint def A034699(n): return max((p**e for p, e in factorint(n).items()), default=1) # Chai Wah Wu, Apr 17 2023
Formula
If n = p_1^e_1 *...* p_k^e_k, p_1 < ... < p_k primes, then a(n) = Max_i p_i^e_i.
a(n) = a(m) iff m = d*a(n), where d is a divisor of A038610(a(n)). - I. V. Serov, Jun 19 2019
Comments