A034729 a(n) = Sum_{ k, k|n } 2^(k-1).
1, 3, 5, 11, 17, 39, 65, 139, 261, 531, 1025, 2095, 4097, 8259, 16405, 32907, 65537, 131367, 262145, 524827, 1048645, 2098179, 4194305, 8390831, 16777233, 33558531, 67109125, 134225995, 268435457, 536887863, 1073741825, 2147516555, 4294968325, 8590000131
Offset: 1
Keywords
Examples
From _Gus Wiseman_, Sep 16 2018: (Start) The a(4) = 11 constant multiset partitions: (1)(1)(1)(1) (11)(11) (12)(12) (1111) (1222) (1122) (1112) (1233) (1223) (1123) (1234) (End)
Links
- T. D. Noe, Table of n, a(n) for n = 1..1000
Crossrefs
Cf. A289508.
Programs
-
Magma
A034729:= func< n | (&+[2^(d-1): d in Divisors(n)]) >; [A034729(n): n in [1..40]]; // G. C. Greubel, Jun 26 2024
-
Maple
seq(add(2^(k-1),k=numtheory:-divisors(n)), n = 1 .. 100); # Robert Israel, Aug 22 2014
-
Mathematica
Rest[CoefficientList[Series[Sum[x^k/(1-2*x^k),{k,1,30}],{x,0,30}],x]] (* Vaclav Kotesovec, Sep 08 2014 *)
-
PARI
A034729(n) = sumdiv(n,k,2^(k-1)) \\ Michael B. Porter, Mar 11 2010
-
PARI
{a(n)=polcoeff(sum(m=1,n,2^(m-1)*x^m/(1-x^m +x*O(x^n))),n)} for(n=1,40,print1(a(n),", ")) \\ Paul D. Hanna, Aug 21 2014
-
PARI
{a(n)=local(A=x+x^2);A=sum(m=1,n,x^m*sumdiv(m,d,1/(1 - x^(m/d) +x*O(x^n))^d) );polcoeff(A,n)} for(n=1,40,print1(a(n),", ")) \\ Paul D. Hanna, Aug 21 2014
-
Python
from sympy import divisors def A034729(n): return sum(1<<(d-1) for d in divisors(n,generator=True)) # Chai Wah Wu, Jul 15 2022
-
SageMath
def A034729(n): return sum(2^(k-1) for k in (1..n) if (k).divides(n)) [A034729(n) for n in range(1,41)] # G. C. Greubel, Jun 26 2024
Formula
G.f.: Sum_{n>0} x^n/(1-2*x^n). - Vladeta Jovovic, Nov 14 2002
a(n) = 1/2 * A055895(n). - Joerg Arndt, Aug 14 2012
G.f.: Sum_{n>=1} 2^(n-1) * x^n / (1 - x^n). - Paul D. Hanna, Aug 21 2014
G.f.: Sum_{n>=1} x^n * Sum_{d|n} 1/(1 - x^d)^(n/d). - Paul D. Hanna, Aug 21 2014
a(n) ~ 2^(n-1). - Vaclav Kotesovec, Sep 09 2014
a(n) = Sum_{c is a composition of n} A000005(gcd(c)). - Gus Wiseman, Sep 16 2018
Comments