A034730 Dirichlet convolution of b_n=1 with c_n=3^(n-1).
1, 4, 10, 31, 82, 256, 730, 2218, 6571, 19768, 59050, 177430, 531442, 1595056, 4783060, 14351125, 43046722, 129146980, 387420490, 1162281262, 3486785140, 10460412256, 31381059610, 94143358444, 282429536563, 847289140888, 2541865834900, 7625599080070, 22876792454962
Offset: 1
Keywords
Links
- Seiichi Manyama, Table of n, a(n) for n = 1..2000
Crossrefs
Programs
-
Magma
A034730:= func< n | (&+[3^(d-1): d in Divisors(n)]) >; [A034730(n): n in [1..40]]; // G. C. Greubel, Jun 25 2024
-
Mathematica
Rest[CoefficientList[Series[Sum[x^k/(1-3*x^k),{k,1,30}],{x,0,30}],x]] (* Vaclav Kotesovec, Sep 09 2014 *) A034730[n_]:= DivisorSum[n, 3^(#-1) &]; Table[A034730[n], {n,40}] (* G. C. Greubel, Jun 25 2024 *)
-
PARI
{a(n) = sumdiv(n, d, 3^(d-1))} \\ Seiichi Manyama, Jun 26 2019
-
SageMath
def A034730(n): return sum(3^(k-1) for k in (1..n) if (k).divides(n)) [A034730(n) for n in range(1,41)] # G. C. Greubel, Jun 25 2024
Formula
G.f.: Sum_{n>0} x^n/(1-3*x^n). - Vladeta Jovovic, Nov 14 2002
a(n) ~ 3^(n-2). - Vaclav Kotesovec, Sep 09 2014
a(n) = Sum_{d|n} 3^(d-1). - Seiichi Manyama, Jun 26 2019