A034742 Dirichlet convolution of Moebius function mu(n) (A008683) with Catalan numbers (A000108).
1, 0, 1, 4, 13, 40, 131, 424, 1428, 4848, 16795, 58740, 208011, 742768, 2674425, 9694416, 35357669, 129643320, 477638699, 1767258324, 6564120287, 24466250224, 91482563639, 343059554440, 1289904147310, 4861946193440, 18367353070722, 69533550173100, 263747951750359
Offset: 1
Examples
G.f. = x + x^3 + 4*x^4 + 13*x^5 + 40*x^6 + 131*x^7 + 424*x^8 + 1428*x^9 + ...
Programs
-
Mathematica
Table[Sum[MoebiusMu[n/d]*CatalanNumber[d-1], {d, Divisors[n]}], {n, 1, 30}] (* Vaclav Kotesovec, Sep 10 2019 *)
-
PARI
/* Dirichlet convolution of mu(n) with Catalan numbers: */ {a(n) = sumdiv(n, d, moebius(n/d) * binomial(2*(d-1),d-1)/d)} for(n=1,30,print1(a(n),", ")) \\ Paul D. Hanna, Jan 04 2015
-
PARI
/* G.f. satisfies: Sum_{n>=1} A((x-x^2)^n) = x: */ {a(n)=local(A=[1,0]);for(i=1,n,A=concat(A,0);A[#A]=-Vec(sum(n=1,#A,subst(x*Ser(A),x,(x-x^2 +x*O(x^#A))^n)))[#A]);A[n]} for(n=1,30,print1(a(n),", ")) \\ Paul D. Hanna, Jan 04 2015
Formula
G.f. A(x) satisfies: Sum_{n>=1} A((x-x^2)^n) = x. - Paul D. Hanna, Jan 04 2015
a(n) = Sum_{d|n} Moebius(n/d) * binomial(2*(d-1), d-1)/d. - Paul D. Hanna, Jan 04 2015
a(n) ~ 2^(2*n-2) / (sqrt(Pi) * n^(3/2)). - Vaclav Kotesovec, Sep 11 2019