cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A034742 Dirichlet convolution of Moebius function mu(n) (A008683) with Catalan numbers (A000108).

Original entry on oeis.org

1, 0, 1, 4, 13, 40, 131, 424, 1428, 4848, 16795, 58740, 208011, 742768, 2674425, 9694416, 35357669, 129643320, 477638699, 1767258324, 6564120287, 24466250224, 91482563639, 343059554440, 1289904147310, 4861946193440, 18367353070722, 69533550173100, 263747951750359
Offset: 1

Views

Author

Keywords

Examples

			G.f. = x + x^3 + 4*x^4 + 13*x^5 + 40*x^6 + 131*x^7 + 424*x^8 + 1428*x^9 + ...
		

Programs

  • Mathematica
    Table[Sum[MoebiusMu[n/d]*CatalanNumber[d-1], {d, Divisors[n]}], {n, 1, 30}] (* Vaclav Kotesovec, Sep 10 2019 *)
  • PARI
    /* Dirichlet convolution of mu(n) with Catalan numbers: */
    {a(n) = sumdiv(n, d, moebius(n/d) * binomial(2*(d-1),d-1)/d)}
    for(n=1,30,print1(a(n),", ")) \\ Paul D. Hanna, Jan 04 2015
    
  • PARI
    /* G.f. satisfies: Sum_{n>=1} A((x-x^2)^n) = x: */
    {a(n)=local(A=[1,0]);for(i=1,n,A=concat(A,0);A[#A]=-Vec(sum(n=1,#A,subst(x*Ser(A),x,(x-x^2 +x*O(x^#A))^n)))[#A]);A[n]}
    for(n=1,30,print1(a(n),", ")) \\ Paul D. Hanna, Jan 04 2015

Formula

G.f. A(x) satisfies: Sum_{n>=1} A((x-x^2)^n) = x. - Paul D. Hanna, Jan 04 2015
a(n) = Sum_{d|n} Moebius(n/d) * binomial(2*(d-1), d-1)/d. - Paul D. Hanna, Jan 04 2015
a(n) ~ 2^(2*n-2) / (sqrt(Pi) * n^(3/2)). - Vaclav Kotesovec, Sep 11 2019