cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A034754 Dirichlet convolution of 3^(n-1) with phi(n).

Original entry on oeis.org

1, 4, 11, 32, 85, 260, 735, 2224, 6585, 19780, 59059, 177472, 531453, 1595076, 4783175, 14351168, 43046737, 129147252, 387420507, 1162281440, 3486785925, 10460412292, 31381059631, 94143360944, 282429536825, 847289140932
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Sum[3^(n/d - 1)*EulerPhi[d], {d, Divisors[n]}], {n, 1, 30}] (* Vaclav Kotesovec, Sep 10 2019 *)
  • PARI
    a(n) = sum(k=1, n, 3^(gcd(k, n)-1)); \\ Seiichi Manyama, Apr 17 2021
    
  • PARI
    a(n) = sumdiv(n, d, eulerphi(n/d)*3^(d-1)); \\ Seiichi Manyama, Apr 17 2021
    
  • PARI
    my(N=40, x='x+O('x^N)); Vec(sum(k=1, N, eulerphi(k)*x^k/(1-3*x^k))) \\ Seiichi Manyama, Apr 17 2021

Formula

a(n) ~ 3^(n-1). - Vaclav Kotesovec, Sep 11 2019
G.f.: Sum_{k>=1} phi(k) * x^k / (1 - 3*x^k). - Ilya Gutkovskiy, Feb 14 2020
a(n) = Sum_{k=1..n} 3^(gcd(k, n) - 1) = A054610(n)/3. - Seiichi Manyama, Apr 17 2021
a(n) = Sum_{k=1..n} 3^(n/gcd(n,k) - 1)*phi(gcd(n,k))/phi(n/gcd(n,k)). - Richard L. Ollerton, May 06 2021