A034844 Primes with only nonprime decimal digits.
11, 19, 41, 61, 89, 101, 109, 149, 181, 191, 199, 401, 409, 419, 449, 461, 491, 499, 601, 619, 641, 661, 691, 809, 811, 881, 911, 919, 941, 991, 1009, 1019, 1049, 1061, 1069, 1091, 1109, 1181, 1409, 1481, 1489, 1499, 1601, 1609, 1619, 1669, 1699, 1801, 1811
Offset: 1
Examples
E.g. 149 is a prime made of nonprime digits(1,4,9). 991 is a prime without any prime digits.
Links
- T. D. Noe, Table of n, a(n) for n = 1..1000
- Chris Caldwell, The First 1,000 Primes
- Chris K. Caldwell and G. L. Honaker, Jr., 104869, Prime Curios!
Programs
-
Haskell
a034844 n = a034844_list !! (n-1) a034844_list = filter (not . any (`elem` "2357") . show ) a000040_list -- Reinhard Zumkeller, Jul 19 2011
-
Magma
[p: p in PrimesUpTo(2000) | forall{d: d in [2,3,5,7] | d notin Set(Intseq(p))}]; // Bruno Berselli, Jul 27 2011
-
Mathematica
Select[Prime[Range[279]], Intersection[IntegerDigits[#], {2, 3, 5, 7}] == {} &] (* Jayanta Basu, Apr 18 2013 *) Union[Select[Flatten[Table[FromDigits/@Tuples[{1,4,6,8,9,0},n],{n,2,4}]],PrimeQ]] (* Harvey P. Dale, Dec 08 2014 *)
-
PARI
is_A034844(n)=isprime(n)&!apply(x->isprime(x),eval(Vec(Str(n)))) \\ M. F. Hasler, Aug 27 2012
-
PARI
is_A034844(n)=isprime(n)&!setintersect(Set(Vec(Str(n))),Vec("2357")) \\ M. F. Hasler, Aug 27 2012
-
Python
from sympy import isprime from itertools import product def auptod(maxdigits): alst = [] for d in range(1, maxdigits+1): for p in product("014689", repeat=d-1): if d > 1 and p[0] == "0": continue for end in "19": s = "".join(p) + end t = int(s) if isprime(t): alst.append(t) return alst print(auptod(4)) # Michael S. Branicky, Nov 19 2021
Formula
a(n) >> n^1.285. [Charles R Greathouse IV, Feb 20 2012]
Extensions
Edited by N. J. A. Sloane, Feb 22 2009 at the suggestion of R. J. Mathar
Comments