cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A034844 Primes with only nonprime decimal digits.

Original entry on oeis.org

11, 19, 41, 61, 89, 101, 109, 149, 181, 191, 199, 401, 409, 419, 449, 461, 491, 499, 601, 619, 641, 661, 691, 809, 811, 881, 911, 919, 941, 991, 1009, 1019, 1049, 1061, 1069, 1091, 1109, 1181, 1409, 1481, 1489, 1499, 1601, 1609, 1619, 1669, 1699, 1801, 1811
Offset: 1

Views

Author

Keywords

Comments

A109066(n) = 0 iff prime(n) is in this sequence. [Reinhard Zumkeller, Jul 11 2010, corrected by M. F. Hasler, Aug 27 2012]
Or, primes p such that A193238(p) = 0. - M. F. Hasler, Aug 27 2012
Intersection of A084984 and A000040; complement of A179336 (within the primes A000040). [Reinhard Zumkeller, Jul 19 2011, edited by M. F. Hasler, Aug 27 2012]
The smallest prime that contains all the six nonprime decimal digits is a(694) = 104869 (see Prime Curios! link). - Bernard Schott, Mar 21 2023

Examples

			E.g. 149 is a prime made of nonprime digits(1,4,9).
991 is a prime without any prime digits.
		

Crossrefs

Programs

  • Haskell
    a034844 n = a034844_list !! (n-1)
    a034844_list = filter (not . any  (`elem` "2357") . show ) a000040_list
    -- Reinhard Zumkeller, Jul 19 2011
    
  • Magma
    [p: p in PrimesUpTo(2000) | forall{d: d in [2,3,5,7] | d notin Set(Intseq(p))}];  // Bruno Berselli, Jul 27 2011
    
  • Mathematica
    Select[Prime[Range[279]], Intersection[IntegerDigits[#], {2, 3, 5, 7}] == {} &] (* Jayanta Basu, Apr 18 2013 *)
    Union[Select[Flatten[Table[FromDigits/@Tuples[{1,4,6,8,9,0},n],{n,2,4}]],PrimeQ]] (* Harvey P. Dale, Dec 08 2014 *)
  • PARI
    is_A034844(n)=isprime(n)&!apply(x->isprime(x),eval(Vec(Str(n)))) \\ M. F. Hasler, Aug 27 2012
    
  • PARI
    is_A034844(n)=isprime(n)&!setintersect(Set(Vec(Str(n))),Vec("2357")) \\ M. F. Hasler, Aug 27 2012
    
  • Python
    from sympy import isprime
    from itertools import product
    def auptod(maxdigits):
        alst = []
        for d in range(1, maxdigits+1):
            for p in product("014689", repeat=d-1):
                if d > 1 and p[0] == "0": continue
                for end in "19":
                    s = "".join(p) + end
                    t = int(s)
                    if isprime(t): alst.append(t)
        return alst
    print(auptod(4)) # Michael S. Branicky, Nov 19 2021

Formula

a(n) >> n^1.285. [Charles R Greathouse IV, Feb 20 2012]

Extensions

Edited by N. J. A. Sloane, Feb 22 2009 at the suggestion of R. J. Mathar