cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A034999 Number of ways to cut a 2 X n rectangle into rectangles with integer sides.

Original entry on oeis.org

1, 2, 8, 34, 148, 650, 2864, 12634, 55756, 246098, 1086296, 4795090, 21166468, 93433178, 412433792, 1820570506, 8036386492, 35474325410, 156591247016, 691227204226, 3051224496244, 13468756547882, 59453967813584, 262442511046330, 1158477291582892
Offset: 0

Views

Author

Keywords

Comments

Hankel transform is 1, 4, 12, 0, 0, 0, 0, 0, 0, 0, 0, 0, ... . - Philippe Deléham, Dec 10 2011

Examples

			For n=2 the a(2) = 8 ways to cut are:
.___.  .___.  .___.  .___.  .___.  .___.  .___.  .___.
|   |  | | |  |___|  | |_|  |_| |  |___|  |_|_|  |_|_|
|___|  |_|_|  |___|  |_|_|  |_|_|  |_|_|  |___|  |_|_|  .
		

Crossrefs

Column 2 of A116694. - Alois P. Heinz, Dec 10 2012

Formula

a(n) = 1+3^(n-1) + Sum_{i=1..n-1} (1+3^(i-1)) a(n-i).
a(n) = 6a(n - 1) - 7a(n - 2), a(n) = ((4 + sqrt(2)) (3 + sqrt(2))^n + (4 - sqrt(2)) (3 - sqrt(2))^n)/14. - N. Sato, May 10 2006
G.f.: (1-x)*(1-3*x)/(1-6*x+7*x^2). - Richard Stanley, Dec 09 2011
E.g.f.: (3 + exp(3*x)*(4*cosh(sqrt(2)*x) + sqrt(2)*sinh(sqrt(2)*x)))/7. - Stefano Spezia, Feb 17 2022
a(n) = 2*A086351(n-1), n>0. - R. J. Mathar, Apr 07 2022

Extensions

a(0) added by Richard Stanley, Dec 09 2011