A035064 Numbers k such that 2^k does not contain the digit 9 (probably finite).
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 14, 15, 16, 17, 18, 19, 20, 23, 24, 25, 26, 27, 28, 30, 31, 45, 46, 47, 57, 58, 59, 71, 77, 99, 108
Offset: 1
Examples
Here is 2^108, conjecturally the largest power of 2 that does not contain a 9: 324518553658426726783156020576256. - _N. J. A. Sloane_, Feb 10 2023
Crossrefs
Programs
-
Magma
[n: n in [0..1000] | not 9 in Intseq(2^n) ]; // Vincenzo Librandi, May 06 2015
-
Mathematica
Join[{0}, Select[Range@ 1000, FreeQ[IntegerDigits[2^#], 9] &]] (* Vincenzo Librandi, May 06 2015 *)
-
PARI
A035064 = select( is_A035064(n)=vecmax(digits(2^n))<9, [0..199]) \\ M. F. Hasler, Jul 09 2025
-
Python
(A035064:=[n for n in range(123) if max(str(2**n))<'9']) # M. F. Hasler, Jul 09 2025
Extensions
Initial 0 added by Vincenzo Librandi, May 06 2015
Removed keyword "fini" at the suggestion of Nathan Fox, since it is only a conjecture that this sequence contains only finitely many terms. - N. J. A. Sloane, Mar 03 2016