cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 11 results. Next

A007377 Numbers k such that the decimal expansion of 2^k contains no 0.

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 13, 14, 15, 16, 18, 19, 24, 25, 27, 28, 31, 32, 33, 34, 35, 36, 37, 39, 49, 51, 67, 72, 76, 77, 81, 86
Offset: 1

Views

Author

Keywords

Comments

It is an open problem of long standing to show that 86 is the last term.
A027870(a(n)) = A224782(a(n)) = 0. - Reinhard Zumkeller, Apr 30 2013
See A030700 for the analog for 3^k, which seems to end with k=68. - M. F. Hasler, Mar 07 2014
Checked up to k = 10^10. - David Radcliffe, Aug 21 2022

Examples

			Here is 2^86, conjecturally the largest power of 2 not containing a 0: 77371252455336267181195264. - _N. J. A. Sloane_, Feb 10 2023
		

References

  • J. S. Madachy, Mathematics on Vacation, Scribner's, NY, 1966, p. 126.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Some similar sequences are listed in A035064.
Cf. also A031142.

Programs

  • Haskell
    import Data.List (elemIndices)
    a007377 n = a007377_list !! (n-1)
    a007377_list = elemIndices 0 a027870_list
    -- Reinhard Zumkeller, Apr 30 2013
    
  • Magma
    [ n: n in [0..50000] | not 0 in Intseq(2^n) ];  // Bruno Berselli, Jun 08 2011
    
  • Maple
    remove(t -> has(convert(2^t,base,10),0),[$0..1000]); # Robert Israel, Dec 29 2015
  • Mathematica
    Do[ If[ Union[ RealDigits[ 2^n ] [[1]]] [[1]] != 0, Print[ n ] ], {n, 1, 60000}]
    Select[Range@1000, First@Union@IntegerDigits[2^# ] != 0 &]
    Select[Range[0,100],DigitCount[2^#,10,0]==0&] (* Harvey P. Dale, Feb 06 2015 *)
  • PARI
    for(n=0,99,if(vecmin(eval(Vec(Str(2^n)))),print1(n", "))) \\ Charles R Greathouse IV, Jun 30 2011
    
  • Perl
    use bignum;
    for(0..99) {
      if((1<<$_) =~ /^[1-9]+$/) {
        print "$_, "
      }
    } # Charles R Greathouse IV, Jun 30 2011
    
  • Python
    def ok(n): return '0' not in str(2**n)
    print(list(filter(ok, range(10**4)))) # Michael S. Branicky, Aug 08 2021

Extensions

a(1) = 0 prepended by Reinhard Zumkeller, Apr 30 2013

A030705 Numbers k such that the decimal expansion of 9^k contains no zeros (probably finite).

Original entry on oeis.org

0, 1, 2, 3, 4, 6, 7, 12, 13, 14, 17, 34
Offset: 1

Views

Author

Keywords

Comments

Integers in A030700 / 2. - M. F. Hasler, Mar 07 2014
No more terms <= 10^5. - Georg Fischer, Mar 12 2020

Crossrefs

Cf. A007377 (analog for 2^n), A030700 (3), A030701 (4), A008839 (5), A030702 (6), A030703 and A195908 (7), A030704 (8), A030706 and A195946 (11), A195944 and A195945 (13); A195942, A195943.
This is row 0 of A305929.
Cf. A035064.

Programs

  • Magma
    [n: n in [0..500] | not 0 in Intseq(9^n)]; // Vincenzo Librandi, Mar 08 2014
  • Mathematica
    Reap[For[n = 0, n < 100, n++, If[FreeQ[IntegerDigits[9^n], 0], Sow[n]]]][[2, 1]] (* Jean-François Alcover, Oct 04 2017 *)
  • PARI
    select( is(n)=vecmin(digits(9^n)), [0..39]) \\ M. F. Hasler, Mar 07 2014
    

Extensions

Offset changed to 1 and initial 0 added by M. F. Hasler, Mar 07 2014
Removed keyword "fini" (as in A035064) since it is only a conjecture that this sequence contains only finitely many terms. - Georg Fischer, Mar 12 2020

A065744 Number of 9's in the decimal expansion of 2^n.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 3, 3, 2, 1, 1, 1, 2, 1, 2, 2, 1, 2, 1, 0, 0, 0, 1, 3, 3, 2, 3, 5, 3, 3, 3, 0, 0, 0, 2, 3, 1, 1, 1, 2, 2, 3, 3, 2, 1, 0, 2, 5, 2, 3, 2, 0, 2, 2, 3, 3, 1, 4, 3, 2, 1, 2, 2, 4, 4, 2, 6, 8, 3, 3, 3, 1, 1, 0, 2
Offset: 0

Views

Author

Benoit Cloitre, Dec 04 2001

Keywords

Comments

See A035064 for the indices of zeros. I conjecture that any value x = 0, 1, 2, ... occurs only a finite number of times N(x) = 37, 27, 36, 46, 20, 31, 32, 30, 46, 29, 22, ... in this sequence, for the last time at well defined indices i(x) = 108, 197, 296, 277, 278, 315, 379, 555, 503, 504, 539, 696, 667, ... - M. F. Hasler, Jul 09 2025

Examples

			2^12 = 4096 so a(12)=1.
		

Crossrefs

Similar for other digits: A027870 (0's), A065712 (1's), A065710 (2's), A065714 (3's), A065715 (4's), A065716 (5's), A065717 (6's), A065718 (7's), A065719 (8's).
Cf. A035064 (2^n has no digit 9).

Programs

  • Mathematica
    Table[ Count[ IntegerDigits[2^n], 9], {n, 0, 100} ]
  • PARI
    Count(x,d)={ #select(t->t==d, digits(x)) }
    a(n) = Count(2^n, 9) \\ Harry J. Smith, Oct 27 2009
    
  • Python
    def A065744(n):
        return str(2**n).count('9')  # Chai Wah Wu, Feb 14 2020

Extensions

More terms from Robert G. Wilson v, Dec 07 2001

A034293 Numbers k such that 2^k does not contain the digit 2 (probably finite).

Original entry on oeis.org

0, 2, 3, 4, 6, 12, 14, 16, 20, 22, 23, 26, 34, 35, 36, 39, 42, 46, 54, 64, 74, 83, 168
Offset: 1

Views

Author

Keywords

Comments

Is 168 the last term?
First row of A136291. - R. J. Mathar Apr 29 2008
Equivalently, indices of zeros in A065710. - M. F. Hasler, Feb 10 2023

Examples

			Here is 2^168, conjecturally the largest power of 2 that does not contain a 2: 374144419156711147060143317175368453031918731001856. - _N. J. A. Sloane_, Feb 10 2023
		

Crossrefs

Cf. A007377.
See also similar sequences listed in A035064.
Cf. A065710 (number of '2's in 2^n), A094776.

Programs

Formula

The last term is A094776(2), by definition. - M. F. Hasler, Feb 10 2023

Extensions

Edited by N. J. A. Sloane, Oct 03 2007
Removed keyword "fini" since it is only a conjecture that this sequence contains only finitely many terms. - Altug Alkan, May 07 2016

A035057 Numbers k such that 2^k does not contain the digit 1 (probably finite).

Original entry on oeis.org

1, 2, 3, 5, 6, 8, 11, 12, 15, 16, 19, 23, 25, 28, 32, 33, 35, 38, 43, 52, 56, 59, 63, 66, 73, 91
Offset: 1

Views

Author

Patrick De Geest, Nov 15 1998

Keywords

Comments

No other terms < 10^6. - Chai Wah Wu, Aug 31 2017

Crossrefs

Cf. similar sequences listed in A035064.

Programs

  • Magma
    [n: n in [0..1000] | not 1 in Intseq(2^n) ]; // Vincenzo Librandi, May 06 2015
    
  • Mathematica
    Select[Range[100],DigitCount[2^#,10,1]==0&] (* Harvey P. Dale, Jun 06 2013 *)
  • PARI
    A035057=[n|n<-[0..99], !setsearch(Set(digits(2^n)),1)] \\ M. F. Hasler, Jul 09 2025
  • Python
    A035057_list = [n for n in range(1,10**3) if '1' not in str(2**n)] # Chai Wah Wu, Aug 31 2017
    

A035058 Numbers k such that 2^k does not contain the digit 3 (probably finite).

Original entry on oeis.org

0, 1, 2, 3, 4, 6, 7, 8, 9, 10, 11, 12, 13, 18, 19, 20, 21, 24, 26, 32, 34, 38, 40, 44, 48, 50, 53, 57, 60, 80, 91, 92, 102, 153
Offset: 1

Views

Author

Patrick De Geest, Nov 15 1998

Keywords

Comments

No more terms <= 10^4. - Georg Fischer, Mar 12 2020
Next term > 2*10^5. - Tyler NeSmith, Jul 30 2021

Crossrefs

Cf. similar sequences listed in A035064.

Programs

  • Magma
    [n: n in [0..1000] | not 3 in Intseq(2^n) ]; // Vincenzo Librandi, May 07 2015
    
  • Mathematica
    Join[{0}, Select[Range@10000, FreeQ[IntegerDigits[2^#], 3] &]] (* Vincenzo Librandi, May 07 2015 *)
  • PARI
    isok(n) = ! vecsearch(Set(digits(2^n)), 3); \\ Michel Marcus, Feb 09 2018

Extensions

Initial 0 added by Vincenzo Librandi, May 07 2015
Removed keyword "fini" as in A035064, since it is only a conjecture that this sequence contains only finitely many terms. - Georg Fischer, Mar 12 2020

A035059 Numbers k such that 2^k does not contain the digit 4 (probably finite).

Original entry on oeis.org

0, 1, 3, 4, 5, 7, 8, 9, 13, 15, 16, 17, 21, 23, 24, 29, 40, 41, 43, 55, 69, 75, 85, 107
Offset: 1

Views

Author

Patrick De Geest, Nov 15 1998

Keywords

Comments

a(25) > 2*10^9 if it exists. - Jon E. Schoenfield and Michael S. Branicky, Aug 02 2021

Crossrefs

Cf. similar sequences listed in A035064.

Programs

  • Magma
    [n: n in [0..1000] | not 4 in Intseq(2^n) ]; // Vincenzo Librandi, May 07 2015
    
  • Mathematica
    Join[{0}, Select[Range@10000, FreeQ[IntegerDigits[2^#], 4] &]] (* Vincenzo Librandi, May 07 2015 *)
  • Python
    N = 200; modder = 10**N; REPORT = 10**5
    def ok(s):  return '4' not in s
    def ok1(n): return ok(str(pow(2, n, modder)))
    def afind(limit, startk=0, verbose=False):
        full_tests = 0
        for k in range(startk, limit):
            if ok1(k):
                full_tests += 1
                if ok(str(pow(2, k))): print(k, end=", ")
            if verbose and k and k%REPORT == 0:
                print("[ ...", k, full_tests, "]")
            k += 1
    afind(10**6, verbose=True) # Michael S. Branicky, Aug 02 2021

Extensions

Initial 0 inserted by Vincenzo Librandi, May 07 2015

A035060 Numbers k such that 2^k does not contain the digit 5 (probably finite).

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 6, 7, 10, 11, 12, 13, 14, 15, 17, 18, 22, 23, 24, 26, 27, 30, 31, 32, 34, 36, 38, 43, 46, 55, 62, 65, 66, 71
Offset: 1

Views

Author

Patrick De Geest, Nov 15 1998

Keywords

Crossrefs

Cf. similar sequences listed in A035064.

Programs

  • Magma
    [n: n in [0..1000] | not 5 in Intseq(2^n) ]; // Vincenzo Librandi, May 07 2015
  • Mathematica
    Join[{0}, Select[Range@10000, FreeQ[IntegerDigits[2^#], 5] &]] (* Vincenzo Librandi, May 07 2015 *)
    Select[Range[0,80],DigitCount[2^#,10,5]==0&] (* Harvey P. Dale, Dec 24 2018 *)

Extensions

Initial 0 inserted by Vincenzo Librandi, May 07 2015

A035061 Numbers n such that 2^n does not contain the digit 6 (probably finite).

Original entry on oeis.org

0, 1, 2, 3, 5, 7, 9, 10, 11, 13, 17, 19, 21, 22, 25, 27, 30, 33, 37, 39, 41, 45, 47, 53, 54, 57, 90, 93
Offset: 1

Views

Author

Patrick De Geest, Nov 15 1998

Keywords

Crossrefs

Cf. similar sequences listed in A035064.

Programs

  • Magma
    [n: n in [0..1000] | not 6 in Intseq(2^n) ]; // Vincenzo Librandi, May 07 2015
  • Mathematica
    Join[{0}, Select[Range@10000, FreeQ[IntegerDigits[2^#], 6] &]] (* Vincenzo Librandi, May 07 2015 *)

Extensions

Initial 0 added by Vincenzo Librandi, May 07 2015

A035062 Numbers n such that 2^n does not contain the digit 7.

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 16, 18, 19, 22, 23, 25, 28, 33, 41, 42, 49, 50, 54, 61, 71
Offset: 1

Views

Author

Patrick De Geest, Nov 15 1998

Keywords

Comments

It is conjectured that 71 is the last term.

Crossrefs

Cf. similar sequences listed in A035064.

Programs

Extensions

Edited by N. J. A. Sloane, May 21 2008 at the suggestion of R. J. Mathar
Initial 0 added and Mathematica code adapted by Vincenzo Librandi, May 06 2015
Showing 1-10 of 11 results. Next