A035103 Number of 0's in binary representation of n-th prime.
1, 0, 1, 0, 1, 1, 3, 2, 1, 1, 0, 3, 3, 2, 1, 2, 1, 1, 4, 3, 4, 2, 3, 3, 4, 3, 2, 2, 2, 3, 0, 5, 5, 4, 4, 3, 3, 4, 3, 3, 3, 3, 1, 5, 4, 3, 3, 1, 3, 3, 3, 1, 3, 1, 7, 5, 5, 4, 5, 5, 4, 5, 4, 3, 4, 3, 4, 5, 3, 3, 5, 3, 2, 3, 2, 1, 5, 4, 5, 4, 4, 4, 2, 4, 2, 2, 5, 4, 3, 2, 3, 1, 2, 2, 2, 1, 1, 7, 6, 5, 6, 5, 5, 5, 4
Offset: 1
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 1..10000
Programs
-
Haskell
a035103 = a023416 . a000040 -- Reinhard Zumkeller, Feb 19 2013
-
Mathematica
Table[ Count[ IntegerDigits[ Prime[ n ], 2 ], 0 ], {n, 120} ] Table[DigitCount[p,2,0],{p,Prime[Range[120]]}] (* Harvey P. Dale, Mar 03 2023 *)
-
PARI
A035103(n) = #(n=binary(prime(n)))-norml2(n) \\ M. F. Hasler, Nov 21 2009
Formula
a(n) = 0 for n in { A059305 }. - Alois P. Heinz, Jun 26 2021
Extensions
More terms from Erich Friedman