cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A035191 Coefficients in expansion of Dirichlet series Product_p (1-(Kronecker(m,p)+1)*p^(-s)+Kronecker(m,p)*p^(-2s))^(-1) for m = 9.

Original entry on oeis.org

1, 2, 1, 3, 2, 2, 2, 4, 1, 4, 2, 3, 2, 4, 2, 5, 2, 2, 2, 6, 2, 4, 2, 4, 3, 4, 1, 6, 2, 4, 2, 6, 2, 4, 4, 3, 2, 4, 2, 8, 2, 4, 2, 6, 2, 4, 2, 5, 3, 6, 2, 6, 2, 2, 4, 8, 2, 4, 2, 6, 2, 4, 2, 7, 4, 4, 2, 6, 2, 8, 2, 4, 2, 4, 3, 6, 4, 4, 2, 10, 1
Offset: 1

Views

Author

Keywords

Comments

Number of divisors of n not congruent to 0 mod 3. - Vladeta Jovovic, Oct 26 2001
a(n) is the number of factors (over Q) of the polynomial x^(2n) + x^n + 1 . a(n) = d(3n) - d(n) where d() is the divisor function. - Yuval Dekel (dekelyuval(AT)hotmail.com), Aug 28 2003
Equals Mobius transform of A011655. - Gary W. Adamson, Apr 24 2009

Crossrefs

Programs

  • Haskell
    a035191 n = a001817 n + a001822 n  -- Reinhard Zumkeller, Nov 26 2011
    
  • Magma
    [NumberOfDivisors(n)/Valuation(3*n, 3): n in [1..100]]; // Vincenzo Librandi, Jun 03 2019
  • Maple
    for n from 1 to 500 do a := ifactors(n):s := 1:for k from 1 to nops(a[2]) do p := a[2][k][1]:e := a[2][k][2]: if p=3 then b := 1:else b := e+1:fi:s := s*b:od:printf(`%d,`,s); od:
    # alternative
    A035191 := proc(n)
        A001817(n)+A001822(n) ;
    end proc:
    [seq(A035191(n),n=1..100)] ; # R. J. Mathar, Sep 25 2017
  • Mathematica
    a[n_] := If[n < 0, 0, DivisorSum[n, KroneckerSymbol[9, #] &]]; Table[ a[n], {n, 1, 100}] (* G. C. Greubel, Apr 27 2018 *)
    f[3, e_] := 1; f[p_, e_] := e+1; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Sep 26 2020 *)
  • PARI
    my(m=9); direuler(p=2,101,1/(1-(kronecker(m,p)*(X-X^2))-X))
    
  • PARI
    a(n) = sumdiv(n, d, kronecker(9, d)); \\ Amiram Eldar, Nov 20 2023
    

Formula

Multiplicative with a(3^e)=1 and a(p^e)=e+1 for p<>3.
G.f.: Sum_{k>0} x^k*(1+x^k)/(1-x^(3*k)). - Vladeta Jovovic, Dec 16 2002
a(n) = A001817(n) + A001822(n). [Reinhard Zumkeller, Nov 26 2011]
a(n) = tau(3*n) - tau(n). - Ridouane Oudra, Sep 05 2020
From Amiram Eldar, Nov 27 2022: (Start)
Dirichlet g.f.: zeta(s)^2 * (1 - 1/3^s).
Sum_{k=1..n} a(k) ~ (2*n*log(n) + (4*gamma + log(3) - 2)*n)/3, where gamma is Euler's constant (A001620). (End)
a(n) = Sum_{d|n} Kronecker(9, d). - Amiram Eldar, Nov 20 2023
a(n) = A000005(A038502(n)). - Ridouane Oudra, Sep 30 2024