cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A035207 Coefficients in expansion of Dirichlet series Product_p (1 - (Kronecker(m,p) + 1)*p^(-s) + Kronecker(m,p)*p^(-2s))^(-1) for m = 25.

Original entry on oeis.org

1, 2, 2, 3, 1, 4, 2, 4, 3, 2, 2, 6, 2, 4, 2, 5, 2, 6, 2, 3, 4, 4, 2, 8, 1, 4, 4, 6, 2, 4, 2, 6, 4, 4, 2, 9, 2, 4, 4, 4, 2, 8, 2, 6, 3, 4, 2, 10, 3, 2, 4, 6, 2, 8, 2, 8, 4, 4, 2, 6, 2, 4, 6, 7, 2, 8, 2, 6, 4, 4, 2, 12, 2, 4, 2, 6, 4, 8, 2, 5, 5, 4, 2, 12, 2, 4, 4, 8, 2, 6, 4, 6, 4, 4, 2, 12, 2, 6, 6, 3, 2, 8, 2
Offset: 1

Views

Author

Keywords

Comments

Number of divisors of n not congruent to 0 mod 5.

Crossrefs

Cf. A116073 (sum of divisors of n not congruent to 0 mod 5).

Programs

  • Magma
    [NumberOfDivisors(n)/Valuation(5*n, 5): n in [1..100]]; // Vincenzo Librandi, Jun 03 2019
  • Maple
    for n from 1 to 500 do a := ifactors(n):s := 1:for k from 1 to nops(a[2]) do p := a[2][k][1]:e := a[2][k][2]: if p=5 then b := 1:else b := e+1:fi:s := s*b:od:printf(`%d,`,s); od:
  • Mathematica
    Table[Count[Divisors[n],?(!Divisible[#,5]&)],{n,110}] (* _Harvey P. Dale, Apr 08 2015 *)
    f[5, e_] := 1; f[p_, e_] := e+1; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Sep 26 2020 *)
  • PARI
    {a(n)=if(n<1, 0, sumdiv(n, d, d%5>0))} /* Michael Somos, Oct 31 2006 */
    
  • PARI
    {a(n)=if(n<1, 0, direuler(p=2, n, 1/(1-X)/if(p==5, 1, 1-X))[n])} /* Michael Somos, Oct 31 2006 */
    

Formula

Multiplicative with a(5^e)=1 and a(p^e)=e+1 for p<>5.
Moebius transform is period 5 sequence A011558. - Michael Somos, Oct 31 2006
G.f.: Sum_{k>=1} x^k*(1 + x^k + x^(2*k) + x^(3*k))/(1 - x^(5*k)). - Ilya Gutkovskiy, Sep 11 2019
a(n) = tau(5*n) - tau(n). - Ridouane Oudra, Sep 05 2020
From Amiram Eldar, Nov 27 2022: (Start)
Dirichlet g.f.: zeta(s)^2 * (1 - 1/5^s).
Sum_{k=1..n} a(k) ~ (4*n*log(n) + (8*gamma + log(5) - 4)*n)/5, where gamma is Euler's constant (A001620). (End)

Extensions

Additional comments from Vladeta Jovovic, Oct 26 2001