cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A035288 Number of ways to place a non-attacking white and black bishop on n X n chessboard.

Original entry on oeis.org

0, 8, 52, 184, 480, 1040, 1988, 3472, 5664, 8760, 12980, 18568, 25792, 34944, 46340, 60320, 77248, 97512, 121524, 149720, 182560, 220528, 264132, 313904, 370400, 434200, 505908, 586152, 675584, 774880, 884740, 1005888, 1139072, 1285064, 1444660, 1618680, 1807968
Offset: 1

Views

Author

Keywords

Examples

			There are 52 ways of putting 2 distinct bishops on 3 X 3 so that neither can capture the other.
		

Crossrefs

Cf. A172123.

Programs

  • Magma
    [(3*n^4-4*n^3+3*n^2-2*n)/3: n in [1..35]]; // Vincenzo Librandi, May 04 2013
    
  • Mathematica
    Table[(3n^4-4n^3+3n^2-2n)/3, {n,40}] (* or *) LinearRecurrence[ {5,-10,10,-5,1}, {0,8,52,184,480}, 40] (* Harvey P. Dale, Nov 19 2011 *)
  • PARI
    a(n)=(3*n^4-4*n^3+3*n^2-2*n)/3; \\ Joerg Arndt, May 04 2013

Formula

a(n) = (3*n^4 - 4*n^3 + 3*n^2 - 2*n)/3.
a(n) = 2 * A172123(n). - Vaclav Kotesovec, Nov 28 2011
a(n) = 5*a(n-1) -10*a(n-2) +10*a(n-3) -5*a(n-4) +a(n-5). - Harvey P. Dale, Nov 19 2011
G.f.: -4*x^2*(x+1)*(x+2)/(x-1)^5. - Colin Barker, Jan 09 2013
E.g.f.: exp(x)*x^2*(12 + 14*x + 3*x^2)/3. - Stefano Spezia, Aug 21 2025