cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A035306 List prime factors of each number in order (each prime factor is followed by its power). Start with 1 = {1,1}.

Original entry on oeis.org

1, 1, 2, 1, 3, 1, 2, 2, 5, 1, 2, 1, 3, 1, 7, 1, 2, 3, 3, 2, 2, 1, 5, 1, 11, 1, 2, 2, 3, 1, 13, 1, 2, 1, 7, 1, 3, 1, 5, 1, 2, 4, 17, 1, 2, 1, 3, 2, 19, 1, 2, 2, 5, 1, 3, 1, 7, 1, 2, 1, 11, 1, 23, 1, 2, 3, 3, 1, 5, 2, 2, 1, 13, 1, 3, 3, 2, 2, 7, 1, 29, 1, 2, 1, 3, 1, 5, 1, 31, 1, 2, 5, 3, 1, 11, 1, 2
Offset: 1

Views

Author

Keywords

Comments

This entry also serves to show how to factor numbers in various languages.
Memo: in Maple, use ifactors, not ifactor!
Length of n-th row = 2*A001221(n). - Reinhard Zumkeller, Jan 10 2013

Examples

			The table starts as follows:
   n  |  (p, valuation_p(n)) for primes p | n
  ----+---------------------------------------
   1  |  (1, 1),   (row 1, by definition of this sequence)
   2  |  (2, 1),           (i.e.: 2 = 2^1)
   3  |  (3, 1),
   4  |  (2, 2),           (i.e.: 4 = 2^2)
   5  |  (5, 1),
   6  |  (2, 1), (3, 1),   (i.e.: 6 = 2^1 * 3^2)
   7  |  (7, 1),
   8  |  (2, 3),
   9  |  (3, 2),
   10 |  (2, 1), (5, 1),
   11 |  (11, 1),
   12 |  (2, 2), (3, 1),
   13 |  (13, 1),
   14 |  (2, 1), (7, 1),
   15 |  (3, 1), (5, 1),
   16 |  (2, 4),
   17 |  (17, 1),
   18 |  (2, 1), (3, 2),
  ... | ...
		

Crossrefs

Cf. A008474 (row sums, apart from initial row).

Programs

  • Haskell
    import Data.List (transpose)
    a035306 n k = a035306_row n !! (k-1)
    a035306_row 1 = [1,1]
    a035306_row n = concat $ transpose [a027748_row n, a124010_row n]
    a035306_tabf = map a035306_row [1..]
    -- Reinhard Zumkeller, Jan 10 2013
    
  • Magma
    [ Factorization(n) : n in [1..120]];
    
  • Maple
    ListTools[Flatten]([[[1, 1]], seq(op(2..-1, ifactors(n)), n=2..34)], 2); # Peter Luschny, Sep 02 2018
  • Mathematica
    Flatten[ Array[ FactorInteger[ # ]&, 40 ] ]
  • PARI
    upto(n) = {n = max(n, 1); my(res = List([1, 1])); for(i = 2, n, f = factor(i); for(j = 1, #f~, listput(res, f[j, 1]); listput(res, f[j, 2]))); res} \\ David A. Corneth, Sep 02 2018
    
  • PARI
    A035306_row(n)=if(n>1, concat(Col(factor(n))~), [1, 1]) \\ M. F. Hasler, Jun 04 2024
    
  • Python
    A035306_row = lambda n: [x for f in factorint(n).items() for x in f]
    from sympy import factorint # M. F. Hasler, Jun 06 2024

Formula

For 1 <= k <= A001221(n): T(n,2*k-1) = A027748(n,k), T(n,2*k) = A124010(n,k). - Reinhard Zumkeller, Jan 10 2013