cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A348477 Drop all 1 but the first 1 in A035306.

Original entry on oeis.org

1, 2, 3, 2, 2, 5, 2, 3, 7, 2, 3, 3, 2, 2, 5, 11, 2, 2, 3, 13, 2, 7, 3, 5, 2, 4, 17, 2, 3, 2, 19, 2, 2, 5, 3, 7, 2, 11, 23, 2, 3, 3, 5, 2, 2, 13, 3, 3, 2, 2, 7, 29, 2, 3, 5, 31, 2, 5, 3, 11, 2, 17, 5, 7, 2, 2, 3, 2, 37, 2, 19, 3, 13, 2, 3, 5, 41, 2, 3, 7, 43, 2, 2, 11, 3, 2, 5, 2, 23, 47, 2, 4, 3, 7, 2, 2, 5, 2, 3, 17, 2, 2, 13, 53, 2, 3, 3, 5, 11, 2, 3, 7, 3, 19, 2, 29
Offset: 1

Views

Author

Seiichi Manyama, Oct 20 2021

Keywords

Comments

List of prime divisors of n and their exponents, ignoring the exponent 1. - Michael De Vlieger, Oct 20 2021

Examples

			   n   prime factorization  triangle
   1 = 1.                 ->  1;
   2 = 2.                 ->  2;
   3 = 3.                 ->  3;
   4 = 2^2.               ->  2, 2;
   5 = 5.                 ->  5;
   6 = 2*3.               ->  2, 3;
   7 = 7.                 ->  7;
   8 = 2^3.               ->  2, 3;
   9 = 3^2.               ->  3, 2;
  10 = 2*5.               ->  2, 5;
  11 = 11.                -> 11;
  12 = 2^2*3.             ->  2, 2, 3;
  13 = 13.                -> 13;
  14 = 2*7                ->  2, 7;
  15 = 3*5.               ->  3, 5;
  16 = 2^4.               ->  2, 4;
		

Crossrefs

Column 1 is A020639.
Row lengths are A238949(n) for n > 1.

Programs

  • Mathematica
    Array[DeleteCases[Flatten@ FactorInteger[#], 1] &, 58] /. {} -> {1} // Flatten (* Michael De Vlieger, Oct 20 2021 *)
  • PARI
    tabf(nn) = if(nn==1, print1(1, ", "), my(f=factor(nn)); for(i=1, #f~, for(j=1, 2, if((k=f[i, j])>j-1, print1(k, ", ")))));
    
  • Ruby
    require 'prime'
    def A348477(n)
      ary = (2..n).map{|i| i.prime_division}.flatten
      ary.delete(1)
      [1] + ary
    end
    p A348477(60)

A381398 Irregular triangle read by rows, where row n lists the elements of the set of bases and exponents (including exponents = 1) in the prime factorization of n.

Original entry on oeis.org

1, 2, 1, 3, 2, 1, 5, 1, 2, 3, 1, 7, 2, 3, 2, 3, 1, 2, 5, 1, 11, 1, 2, 3, 1, 13, 1, 2, 7, 1, 3, 5, 2, 4, 1, 17, 1, 2, 3, 1, 19, 1, 2, 5, 1, 3, 7, 1, 2, 11, 1, 23, 1, 2, 3, 2, 5, 1, 2, 13, 3, 1, 2, 7, 1, 29, 1, 2, 3, 5, 1, 31, 2, 5, 1, 3, 11, 1, 2, 17, 1, 5, 7, 2, 3
Offset: 2

Views

Author

Paolo Xausa, Feb 22 2025

Keywords

Examples

			Triangle begins:
   [2]  1, 2;
   [3]  1, 3;
   [4]  2;
   [5]  1, 5;
   [6]  1, 2, 3;
   [7]  1, 7;
   [8]  2, 3;
   [9]  2, 3;
  [10]  1, 2, 5;
  ...
The prime factorization of 10 is 2^1*5^1 and the set of these bases and exponents is {1, 2, 5}.
		

Crossrefs

Cf. A381201 (row products), A381202 (row sums), A381205 (row lengths).
Cf. A381203 (row lcms), A381204 (row gcds).
Cf. A081812 (row largest elements), A381212 (row smallest elements).

Programs

  • Mathematica
    A381398row[n_] := Union[Flatten[FactorInteger[n]]];
    Array[A381398row, 50, 2]

A381178 Irregular triangle read by rows, where row n lists the elements of the multiset of bases and exponents (including exponents = 1) in the prime factorization of n.

Original entry on oeis.org

1, 2, 1, 3, 2, 2, 1, 5, 1, 1, 2, 3, 1, 7, 2, 3, 2, 3, 1, 1, 2, 5, 1, 11, 1, 2, 2, 3, 1, 13, 1, 1, 2, 7, 1, 1, 3, 5, 2, 4, 1, 17, 1, 2, 2, 3, 1, 19, 1, 2, 2, 5, 1, 1, 3, 7, 1, 1, 2, 11, 1, 23, 1, 2, 3, 3, 2, 5, 1, 1, 2, 13, 3, 3, 1, 2, 2, 7, 1, 29, 1, 1, 1, 2, 3, 5, 1, 31
Offset: 2

Views

Author

Paolo Xausa, Feb 27 2025

Keywords

Comments

Terms in each row are sorted; cf. A035306, where they are given in (base, exponent) groups.

Examples

			Triangle begins:
   [2]  1, 2;
   [3]  1, 3;
   [4]  2, 2;
   [5]  1, 5;
   [6]  1, 1, 2, 3;
   [7]  1, 7;
   [8]  2, 3;
   [9]  2, 3;
  [10]  1, 1, 2, 5;
  ...
The prime factorization of 10 is 2^1*5^1 and the multiset of these bases and exponents is {1, 1, 2, 5}.
The prime factorization of 132 is 2^2*3^1*11^1 and the multiset of these bases and exponents is {1, 1, 2, 2, 3, 11}.
		

Crossrefs

Cf. A000026 (row products), A001221 (row lengths, divided by 2), A008474 (row sums).
Cf. A081812 (right border), A381212 (first column), A381576 (second column).

Programs

  • Mathematica
    A381178row[n_] := Sort[Flatten[FactorInteger[n]]];
    Array[A381178row, 30, 2]

A381403 a(n) is the mode of the multiset of bases and exponents (including exponents = 1) in the prime factorization of n (using smallest mode if multimodal).

Original entry on oeis.org

1, 1, 2, 1, 1, 1, 2, 2, 1, 1, 2, 1, 1, 1, 2, 1, 2, 1, 2, 1, 1, 1, 3, 2, 1, 3, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 2, 1, 2, 1, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1
Offset: 2

Views

Author

Paolo Xausa, Feb 27 2025

Keywords

Examples

			The prime factorization of 132 is 2^2*3^1*11^1, the multiset of these bases and exponents is {1, 1, 2, 2, 3, 11} and its smallest most frequent element is 1.
		

Crossrefs

Programs

  • Mathematica
    A381403[n_] := Min[Commonest[Flatten[FactorInteger[n]]]];
    Array[A381403, 100, 2]

Formula

a(p) = 1, for p prime.

A381404 a(n) is the mode of the multiset of bases and exponents (including exponents = 1) in the prime factorization of n (using largest mode if multimodal).

Original entry on oeis.org

2, 3, 2, 5, 1, 7, 3, 3, 1, 11, 2, 13, 1, 1, 4, 17, 2, 19, 2, 1, 1, 23, 3, 5, 1, 3, 2, 29, 1, 31, 5, 1, 1, 1, 2, 37, 1, 1, 5, 41, 1, 43, 2, 5, 1, 47, 4, 7, 2, 1, 2, 53, 3, 1, 7, 1, 1, 59, 2, 61, 1, 7, 6, 1, 1, 67, 2, 1, 1, 71, 3, 73, 1, 5, 2, 1, 1, 79, 5, 4, 1, 83, 2, 1, 1
Offset: 2

Views

Author

Paolo Xausa, Feb 27 2025

Keywords

Examples

			The prime factorization of 132 is 2^2*3^1*11^1, the multiset of these bases and exponents is {1, 1, 2, 2, 3, 11} and its largest most frequent element is 2.
		

Crossrefs

Cf. A000040 (fixed points).

Programs

  • Mathematica
    A381404[n_] := Max[Commonest[Flatten[FactorInteger[n]]]];
    Array[A381404, 100, 2]

Formula

a(p) = p, for p prime.

A381588 If n = Product (p_j^k_j) then a(n) = Product (lcm(p_j, k_j)), with a(1) = 1.

Original entry on oeis.org

1, 2, 3, 2, 5, 6, 7, 6, 6, 10, 11, 6, 13, 14, 15, 4, 17, 12, 19, 10, 21, 22, 23, 18, 10, 26, 3, 14, 29, 30, 31, 10, 33, 34, 35, 12, 37, 38, 39, 30, 41, 42, 43, 22, 30, 46, 47, 12, 14, 20, 51, 26, 53, 6, 55, 42, 57, 58, 59, 30, 61, 62, 42, 6, 65, 66, 67, 34, 69, 70, 71
Offset: 1

Views

Author

Paolo Xausa, Feb 28 2025

Keywords

Examples

			a(18) = 12 because 18 = 2^1*3^2, lcm(2,1) = 2, lcm(3,2) = 6 and 2*6 = 12.
a(300) = 30 because 300 = 2^2*3^1*5^2, lcm(2,2) = 2, lcm(3,1) = 3, lcm(5,2) = 10 and 2*3*10 = 60.
		

Crossrefs

Cf. A008473, A008477, A035306, A144338 (fixed points), A369008 (analogous for gcd).

Programs

  • Mathematica
    A381588[n_] := Times @@ LCM @@@ FactorInteger[n];
    Array[A381588, 100]
  • PARI
    a(n) = my(f=factor(n)); prod(i=1, #f~, lcm(f[i,1], f[i,2])); \\ Michel Marcus, Mar 02 2025

Formula

a(p) = p, for p prime.

A381613 If n = Product (p_j^k_j) then a(n) = Product (min(p_j, k_j)), with a(1) = 1.

Original entry on oeis.org

1, 1, 1, 2, 1, 1, 1, 2, 2, 1, 1, 2, 1, 1, 1, 2, 1, 2, 1, 2, 1, 1, 1, 2, 2, 1, 3, 2, 1, 1, 1, 2, 1, 1, 1, 4, 1, 1, 1, 2, 1, 1, 1, 2, 2, 1, 1, 2, 2, 2, 1, 2, 1, 3, 1, 2, 1, 1, 1, 2, 1, 1, 2, 2, 1, 1, 1, 2, 1, 1, 1, 4, 1, 1, 2, 2, 1, 1, 1, 2, 3, 1, 1, 2, 1, 1, 1, 2, 1, 2, 1
Offset: 1

Views

Author

Paolo Xausa, Mar 01 2025

Keywords

Comments

First differs from A323308 at n = 27.

Examples

			a(18) = 2 because 18 = 2^1*3^2, min(2,1) = 1, min(3,2) = 2 and 1*2 = 2.
a(300) = 4 because 300 = 2^2*3^1*5^2, min(2,2) = 2, min(3,1) = 1, min(5,2) = 2 and 2*1*2 = 4.
		

Crossrefs

Programs

  • Mathematica
    A381613[n_] := Times @@ Min @@@ FactorInteger[n];
    Array[A381613, 100]
  • PARI
    a(n) = my(f=factor(n)); prod(i=1, #f~, min(f[i,1], f[i,2])); \\ Michel Marcus, Mar 02 2025

Formula

Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = Product_{p prime} (1 + (1/p - 1/p^p)/(p-1)) = 1.59383299054679951264... . - Amiram Eldar, Mar 07 2025

A381614 If n = Product (p_j^k_j) then a(n) = Product (max(p_j, k_j)), with a(1) = 1.

Original entry on oeis.org

1, 2, 3, 2, 5, 6, 7, 3, 3, 10, 11, 6, 13, 14, 15, 4, 17, 6, 19, 10, 21, 22, 23, 9, 5, 26, 3, 14, 29, 30, 31, 5, 33, 34, 35, 6, 37, 38, 39, 15, 41, 42, 43, 22, 15, 46, 47, 12, 7, 10, 51, 26, 53, 6, 55, 21, 57, 58, 59, 30, 61, 62, 21, 6, 65, 66, 67, 34, 69, 70, 71, 9, 73
Offset: 1

Views

Author

Paolo Xausa, Mar 01 2025

Keywords

Examples

			a(18) = 6 because 18 = 2^1*3^2, max(2,1) = 2, max(3,2) = 3 and 2*3 = 6.
a(300) = 30 because 300 = 2^2*3^1*5^2, max(2,2) = 2, max(3,1) = 3, max(5,2) = 5 and 2*3*5 = 30.
		

Crossrefs

Programs

  • Mathematica
    A381614[n_] := Times @@ Max @@@ FactorInteger[n];
    Array[A381614, 100]
  • PARI
    a(n) = my(f=factor(n)); prod(i=1, #f~, max(f[i,1], f[i,2])); \\ Michel Marcus, Mar 02 2025

Formula

a(p) = p, for p prime.
Sum_{k=1..n} a(k) ~ c * n^2 / 2, where c = A065463 * Product_{p prime} (1 + 1/((p^2-1)*(p^2+p-1)*p^(2*p-2))) = 0.71628338157754073004... . - Amiram Eldar, Mar 07 2025
Showing 1-8 of 8 results.