A348477 Drop all 1 but the first 1 in A035306.
1, 2, 3, 2, 2, 5, 2, 3, 7, 2, 3, 3, 2, 2, 5, 11, 2, 2, 3, 13, 2, 7, 3, 5, 2, 4, 17, 2, 3, 2, 19, 2, 2, 5, 3, 7, 2, 11, 23, 2, 3, 3, 5, 2, 2, 13, 3, 3, 2, 2, 7, 29, 2, 3, 5, 31, 2, 5, 3, 11, 2, 17, 5, 7, 2, 2, 3, 2, 37, 2, 19, 3, 13, 2, 3, 5, 41, 2, 3, 7, 43, 2, 2, 11, 3, 2, 5, 2, 23, 47, 2, 4, 3, 7, 2, 2, 5, 2, 3, 17, 2, 2, 13, 53, 2, 3, 3, 5, 11, 2, 3, 7, 3, 19, 2, 29
Offset: 1
Examples
n prime factorization triangle 1 = 1. -> 1; 2 = 2. -> 2; 3 = 3. -> 3; 4 = 2^2. -> 2, 2; 5 = 5. -> 5; 6 = 2*3. -> 2, 3; 7 = 7. -> 7; 8 = 2^3. -> 2, 3; 9 = 3^2. -> 3, 2; 10 = 2*5. -> 2, 5; 11 = 11. -> 11; 12 = 2^2*3. -> 2, 2, 3; 13 = 13. -> 13; 14 = 2*7 -> 2, 7; 15 = 3*5. -> 3, 5; 16 = 2^4. -> 2, 4;
Links
- Seiichi Manyama, Table of n, a(n) for n = 1..10000
- Eric Weisstein's World of Mathematics, Prime Factorization.
Programs
-
Mathematica
Array[DeleteCases[Flatten@ FactorInteger[#], 1] &, 58] /. {} -> {1} // Flatten (* Michael De Vlieger, Oct 20 2021 *)
-
PARI
tabf(nn) = if(nn==1, print1(1, ", "), my(f=factor(nn)); for(i=1, #f~, for(j=1, 2, if((k=f[i, j])>j-1, print1(k, ", ")))));
-
Ruby
require 'prime' def A348477(n) ary = (2..n).map{|i| i.prime_division}.flatten ary.delete(1) [1] + ary end p A348477(60)
Comments