cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A035348 Triangle of a(n,k) = number of k-member minimal covers of an n-set (n >= k >= 1).

Original entry on oeis.org

1, 1, 1, 1, 6, 1, 1, 25, 22, 1, 1, 90, 305, 65, 1, 1, 301, 3410, 2540, 171, 1, 1, 966, 33621, 77350, 17066, 420, 1, 1, 3025, 305382, 2022951, 1298346, 100814, 988, 1, 1, 9330, 2619625, 47708115, 83384427, 18151560, 549102, 2259, 1
Offset: 1

Views

Author

Keywords

Comments

These are what Clarke calls "Minimal disordered k-covers of labeled n-set".

Examples

			Triangle begins:
  1;
  1,    1;
  1,    6,      1;
  1,   25,     22,       1;
  1,   90,    305,      65,       1,
  1,  301,   3410,    2540,     171,      1;
  1,  966,  33621,   77350,   17066,    420,   1;
  1, 3025, 305382, 2022951, 1298346, 100814, 988,  1;
  ...
		

Crossrefs

Row sums are A046165. Cf. A049055, A003465, A002177.

Programs

  • Maple
    a:= (n, k)-> add(binomial(2^k-k-1, m-k)*m!
        *Stirling2(n, m), m=k..min(n, 2^k-1))/k!:
    seq(seq(a(n, k), k=1..n), n=1..12);  # Alois P. Heinz, Jul 02 2013
  • Mathematica
    a[n_, k_] := Sum[ (-1)^i*(2^k-i-1)^n / (i!*(k-i)!), {i, 0, k}]; Flatten[ Table[ a[n, k], {n, 1, 9}, {k, 1, n}]] (* Jean-François Alcover, Dec 13 2011, after PARI *)
  • PARI
    {a(n, k) = sum(i=0, k, (-1)^i * binomial(k, i) * (2^k-1-i)^n) / k!} /* Michael Somos, Aug 05 1999 */

Formula

a(n,k) = Sum_{j >= 0} (-1)^j * binomial(k,j) * (2^k-1-j)^n. [Hearne-Wagner]
a(n,k) = (1/k!) * Sum_{j >= k} binomial(2^k-k-1,j-k)*j!*Stirling2(n,j). [Macula]
E.g.f.: Sum_{n>=0} (exp(y)-1)^n*exp(y*(2^n-n-1))*x^n/n!. - Vladeta Jovovic, May 08 2004

Extensions

Entry improved by Michael Somos
Explicit formulas added by N. J. A. Sloane, Aug 05 2011