cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 12 results. Next

A003469 Number of minimal covers of an (n + 1)-set by a collection of n nonempty subsets, a(n) = A035348(n,n-1).

Original entry on oeis.org

1, 6, 22, 65, 171, 420, 988, 2259, 5065, 11198, 24498, 53157, 114583, 245640, 524152, 1113959, 2359125, 4980546, 10485550, 22019865, 46137091, 96468716, 201326292, 419430075, 872414881, 1811938950, 3758095978, 7784627789, 16106126895, 33285996048
Offset: 1

Views

Author

Keywords

Comments

A cover of a set S is a collection of nonempty subsets of S whose union is S. A cover of S is called minimal if none of its proper subsets covers S. [from the Hearne/Wagner reference]
Partial sums of A053221.
Construct an inverted triangle table with n rows as follows: the first row are numbers from 1 to n; for the other rows, each number is the sum of the two numbers above it. Then a(n) is the sum of all numbers in the table. See examples below. - Jianing Song, Sep 04 2018

Examples

			From _Jianing Song_, Sep 04 2018: (Start)
For n = 4 the inverted triangle table is:
1     2     3     4
   3     5     7
      8    12
        20
So a(4) = 1 + 2 + 3 + 4 + 3 + 5 + 7 + 8 + 12 + 20 = 65.
For n = 5 the inverted triangle table is:
1     2     3     4     5
   3     5     7     9
      8    12    16
        20    28
           48
So a(5) = 1 + 2 + 3 + 4 + 5 + 3 + 5 + 7 + 9 + 8 + 12 + 16 + 20 + 28 + 48 = 171. (End)
		

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A053218, A053221 (first differences).

Programs

  • Magma
    [2^n*(n+1)-(n^2+3*n+2)/2: n in [1..30]]; // Vincenzo Librandi, Aug 19 2011
  • Maple
    a := n -> add((n+1)*binomial(n+1, k+1)/2, k=1..n):
    seq(a(n), n=1..30); # Zerinvary Lajos, May 08 2007
    A003469:=(-1+z+z**2)/(2*z-1)**2/(z-1)**3; # conjectured by Simon Plouffe in his 1992 dissertation
  • Mathematica
    Table[(n+1)2^n-(n+1)(n+2)/2, {n, 200}] (* Vladimir Joseph Stephan Orlovsky, Jun 30 2011 *)
    CoefficientList[Series[((2*x + 1)*Exp[2*x] - (x^2/2 + 2*x + 1)*Exp[x])/x, {x, 0, 200}], x]*Table[(k+1)!, {k, 0, 200}] (* Stefano Spezia, Sep 04 2018 *)
  • PARI
    a(n) = (n+1)*2^n-(n+1)*(n+2)/2;
    

Formula

G.f.: x*(1 - x - x^2)/((1 - x)^3*(1 - 2*x)^2).
a(n) = (n + 1)*2^n - (n + 1)*(n + 2)/2. - Paul Barry, Jan 27 2003
E.g.f.: (2*x + 1)*exp(2*x) - (x^2/2 + 2*x + 1)*exp(x). - Jianing Song, Sep 04 2018

Extensions

Offset changed from 2 to 1 by Vincenzo Librandi, Aug 19 2011
Title corrected by Geoffrey Critzer, Jun 29 2013

A046165 Number of minimal covers of n objects.

Original entry on oeis.org

1, 1, 2, 8, 49, 462, 6424, 129425, 3731508, 152424420, 8780782707, 710389021036, 80610570275140, 12815915627480695, 2855758994821922882, 892194474524889501292, 391202163933291014701953, 240943718535427829240708786, 208683398342300491409959279244
Offset: 0

Views

Author

Keywords

Comments

No edge of a minimal cover can be a subset of any other, so minimal covers are antichains, but the converse is not true. - Gus Wiseman, Jul 03 2019
a(n) is the number of undirected graphs on n nodes for which the intersection number and independence number are equal. See Proposition 2.3.7 and Theorem 2.3.3 of the Deligeorgaki et al. paper below. - Alex Markham, Oct 13 2022

Examples

			From _Gus Wiseman_, Jul 02 2019: (Start)
The a(1) = 1 through a(3) = 8 minimal covers:
  {{1}}  {{1,2}}    {{1,2,3}}
         {{1},{2}}  {{1},{2,3}}
                    {{2},{1,3}}
                    {{3},{1,2}}
                    {{1,2},{1,3}}
                    {{1,2},{2,3}}
                    {{1},{2},{3}}
                    {{1,3},{2,3}}
(End)
		

Crossrefs

Antichain covers are A006126.
Minimal covering simple graphs are A053530.
Maximal antichains are A326358.
Row sums of A035347 or of A282575.

Programs

  • Maple
    a:= n-> add(add((-1)^i* binomial(k,i) *(2^k-1-i)^n, i=0..k)/k!, k=0..n):
    seq(a(n), n=0..20);  # Alois P. Heinz, Aug 19 2008
  • Mathematica
    Table[Sum[Sum[Binomial[n,i]StirlingS2[i,k](2^k-k-1)^(n-i),{i,k,n}],{k,2,n}]+1,{n,1,20}] (* Geoffrey Critzer, Jun 27 2013 *)

Formula

E.g.f.: Sum_{n>=0} (exp(x)-1)^n*exp(x*(2^n-n-1))/n!. - Vladeta Jovovic, May 08 2004
a(n) = Sum_{k=1..n} Sum_{i=k..n} C(n,i)*Stirling2(i,k)*(2^k - k - 1)^(n - i). - Geoffrey Critzer, Jun 27 2013
a(n) ~ c * 2^(n^2/4 + n + 1/2) / sqrt(Pi*n), where c = JacobiTheta3(0,1/2) = EllipticTheta[3, 0, 1/2] = 2.1289368272118771586694585485449... if n is even, and c = JacobiTheta2(0,1/2) = EllipticTheta[2, 0, 1/2] = 2.1289312505130275585916134025753... if n is odd. - Vaclav Kotesovec, Mar 10 2014

Extensions

a(0)=1 prepended by Alois P. Heinz, Feb 18 2017

A055080 Triangle T(n,k) read by rows, giving number of k-member minimal covers of an unlabeled n-set, k=1..n.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 4, 3, 1, 1, 6, 9, 4, 1, 1, 9, 23, 17, 5, 1, 1, 12, 51, 65, 28, 6, 1, 1, 16, 103, 230, 156, 43, 7, 1, 1, 20, 196, 736, 863, 336, 62, 8, 1, 1, 25, 348, 2197, 4571, 2864, 664, 86, 9, 1, 1, 30, 590, 6093, 22952, 25326, 8609, 1229, 115, 10, 1, 1, 36, 960
Offset: 1

Views

Author

Vladeta Jovovic, Jun 13 2000

Keywords

Comments

Also number of unlabeled split graphs on n vertices and with a k-element clique (cf. A048194).

Examples

			Triangle begins:
  1;
  1,  1;
  1,  2,   1;
  1,  4,   3,   1;
  1,  6,   9,   4,   1;
  1,  9,  23,  17,   5,   1;
  1, 12,  51,  65,  28,   6,  1;
  1, 16, 103, 230, 156,  43,  7, 1;
  1, 20, 196, 736, 863, 336, 62, 8, 1;
  ...
There are four minimal covers of an unlabeled 3-set: one 1-cover {{1,2,3}}, two 2-covers {{1,2},{3}}, {{1,2},{1,3}} and one 3-cover {{1},{2},{3}}.
		

Crossrefs

Row sums give A048194.
Cf. A035348 for labeled case.

Programs

  • PARI
    \\ Needs A(n,m) from A028657.
    T(n,k) = A(n-k, k) - if(kAndrew Howroyd, Feb 28 2023

Formula

T(n,k) = A028657(n,k) - A028657(n-1,k). - Andrew Howroyd, Feb 28 2023

A046166 Number of minimal covers on n objects with 5 members.

Original entry on oeis.org

0, 0, 0, 0, 1, 171, 17066, 1298346, 83384427, 4762648737, 249485204452, 12226539786912, 568267449522773, 25296121946918823, 1086375882592194558, 45264846407024660598, 1837809636559394481439, 72965749033508656346829
Offset: 1

Views

Author

Keywords

Crossrefs

Cf. A035348.

Programs

  • Mathematica
    LinearRecurrence[{171,-12175,461985,-9853624,112007964,-530122320},{0,0,0,0,1,171},18] (* or *) CoefficientList[Series[(x^5)/((1-26x)(1-27x)(1-28x)(1-29x)(1-30x)(1-31x)) ,{x,0,100}],x] (* Indranil Ghosh, Feb 20 2017 *)

Formula

G.f.: x^5/[(1-26x)(1-27x)(1-28x)(1-29x)(1-30x)(1-31x)].

A094544 Triangle of a(n,m) = number of m-member minimal T_0-covers of an n-set (n >= 0, 0<= m <=n).

Original entry on oeis.org

1, 0, 1, 0, 0, 1, 0, 0, 3, 1, 0, 0, 0, 16, 1, 0, 0, 0, 120, 55, 1, 0, 0, 0, 480, 1650, 156, 1, 0, 0, 0, 840, 34650, 13650, 399, 1, 0, 0, 0, 0, 554400, 873600, 89376, 960, 1, 0, 0, 0, 0, 6985440, 45208800, 14747040, 514080, 2223, 1, 0, 0, 0, 0, 69854400, 1989187200
Offset: 0

Views

Author

Goran Kilibarda and Vladeta Jovovic, May 08 2004

Keywords

Comments

A cover of a set is a T_0-cover if for every two distinct points of the set there exists a member (block) of the cover containing one but not the other point.

Examples

			1;
0, 1;
0, 0, 1;
0, 0, 3,   1;
0, 0, 0,  16,    1;
0, 0, 0, 120,   55,   1;
0, 0, 0, 480, 1650, 156, 1;
...
		

Crossrefs

Cf. A035348, A046165, A094545 (row sums), A094546 (column sums).

Programs

  • Mathematica
    Flatten[Table[n!/m! Binomial[2^m-m-1,n-m],{n,0,10},{m,0,n}]] (* Harvey P. Dale, Jan 16 2012 *)

Formula

a(n, m) = n!/m!*binomial(2^m-m-1, n-m).
E.g.f.: Sum_{n>=0} y^n*(1+y)^(2^n-n-1)*x^n/n!.

A094545 Number of minimal T_0-covers of an n-set.

Original entry on oeis.org

1, 1, 1, 4, 17, 176, 2287, 49540, 1518337, 67457584, 4254836111, 376795261844, 46709151254449, 8061849904932136, 1936383997541071639, 646603398091877815516, 300476951799493029958913
Offset: 0

Views

Author

Goran Kilibarda and Vladeta Jovovic, May 08 2004

Keywords

Comments

A cover of a set is a T_0-cover if for every two distinct points of the set there exists a member (block) of the cover containing one but not the other point.
Row sums of A094544.

Crossrefs

Formula

a(n) = Sum_{m=0..n} (n!/m!)*binomial(2^m-m-1, n-m).
a(n) = Sum_{m=0..n} Stirling1(n, m)*A046165(m).
E.g.f.: Sum_{n>=0} x^n*(1+x)^(2^n-n-1)/n!.

A094546 Number of n-member minimal T_0-covers.

Original entry on oeis.org

1, 1, 4, 1457, 112632827396, 158158632767281777075441633086607, 6800377846899806825426438402771408584453689087636553015800284773113817943589005365456
Offset: 0

Views

Author

Goran Kilibarda and Vladeta Jovovic, May 08 2004

Keywords

Comments

A cover of a set is a T_0-cover if for every two distinct points of the set there exists a member (block) of the cover containing one but not the other point.

Crossrefs

Column sums of A094544.

Programs

  • Mathematica
    Table[Sum[(m!/n!)*Binomial[2^n - n - 1, m - n], {m, n, 2^n - 1}], {n, 0, 5}] (* G. C. Greubel, Oct 07 2017 *)
  • PARI
    for(n=0,5, print1(sum(m=n,2^n -1, (m!/n!)*binomial(2^n-n-1, m-n)), ", ")) \\ G. C. Greubel, Oct 07 2017

Formula

a(n) = Sum_{m=n..2^n-1} m!/n!*binomial(2^n-n-1, m-n).

A282575 Triangular array read by rows. T(n,k) is the number of minimal covers of an n-set with exactly k points that are in more than one set of the cover, n>=0, 0<=k<=max(0,n-2).

Original entry on oeis.org

1, 1, 2, 5, 3, 15, 28, 6, 52, 210, 190, 10, 203, 1506, 3360, 1340, 15, 877, 10871, 48321, 60270, 9065, 21, 4140, 80592, 636300, 1820056, 1132880, 57512, 28, 21147, 618939, 8081928, 45455676, 76834926, 21067452, 344316, 36, 115975, 4942070, 101684115, 1027544400, 3860929170, 3406410252, 377190240, 1966440, 45
Offset: 0

Views

Author

Geoffrey Critzer, Feb 18 2017

Keywords

Examples

			Triangle T(n,k) begins:
:    1;
:    1;
:    2;
:    5,     3;
:   15,    28,      6;
:   52,   210,    190,      10;
:  203,  1506,   3360,    1340,      15;
:  877, 10871,  48321,   60270,    9065,    21;
: 4140, 80592, 636300, 1820056, 1132880, 57512, 28;
		

Crossrefs

Cf. A035348. Row sums A046165. Column k=0 A000110. Column k=1 A003466.
Mirrored triangle gives A035347.

Programs

  • Maple
    T:= (n, k)-> binomial(n, k)*add(Stirling2(n-k, j)*(2^j-j-1)^k, j=0..n-k):
    seq(seq(T(n,k), k=0..max(0,n-2)), n=0..12);  # Alois P. Heinz, Feb 18 2017
  • Mathematica
    nn = 8; Drop[Map[Select[#, # > 0 &] &,Range[0, nn]! CoefficientList[Series[Sum[ (Exp[x] - 1)^n/n! Exp[y (2^n - n - 1) x], {n, 0,nn}], {x, 0, nn}], {x, y}]], 1] // Grid

Formula

E.g.f.: (exp(x) - 1)^n/n!*exp(y*(2^n - n - 1)*x).

A046169 Number of minimal covers on n objects with 9 members.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 1, 5065, 14109865, 28586753635, 47057782540912, 66738127617591430, 84508389361603849070, 97838285747685771503930, 105306724888534860425617883, 106678207181565103216667658695
Offset: 1

Views

Author

Keywords

Crossrefs

Cf. A035348.

Formula

G.f.: x^9 / Product_{k=2^9-10..2^9-1} (1-k*x). - Sean A. Irvine, Apr 07 2021

A049055 Triangle read by rows, giving T(n,k) = number of k-member minimal ordered covers of a labeled n-set (1 <= k <= n).

Original entry on oeis.org

1, 1, 2, 1, 12, 6, 1, 50, 132, 24, 1, 180, 1830, 1560, 120, 1, 602, 20460, 60960, 20520, 720, 1, 1932, 201726, 1856400, 2047920, 302400, 5040, 1, 6050, 1832292, 48550824, 155801520, 72586080, 4979520, 40320, 1, 18660, 15717750, 1144994760, 10006131240, 13069123200, 2767474080, 91082880, 362880
Offset: 1

Views

Author

Keywords

Examples

			Triangle starts
  1;
  1,   2;
  1,  12,   6;
  1,  50, 132,  24;
  ...
		

Crossrefs

Row sums are A049056.
Cf. A035348.

Programs

  • Mathematica
    t[n_, k_] := Sum[ (-1)^i*Binomial[k, i]*(2^k - 1 - i)^n, {i, 0, k}]; Flatten[ Join[{1}, Table[t[n, k], {n, 1, 9}, {k, 1, n}]]] (* Jean-François Alcover, Dec 12 2011, after Michael Somos *)
  • PARI
    {T(n, k)=sum(i=0, k, (-1)^i*binomial(k, i)*(2^k-1-i)^n)} /* Michael Somos, Oct 16 2006 */

Formula

T(n,k) = A035348(n,k)*k!, the order in which we cover the n-set is considered. - Geoffrey Critzer, Jun 28 2013
Showing 1-10 of 12 results. Next