cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A003468 Number of minimal 3-covers of a labeled n-set.

Original entry on oeis.org

1, 22, 305, 3410, 33621, 305382, 2619625, 21554170, 171870941, 1337764142, 10216988145, 76862115330, 571247591461, 4203844925302, 30687029023865, 222518183370890, 1604626924403181, 11518132293452862
Offset: 3

Views

Author

Keywords

Comments

This is also the fourth column of the Sheffer triangle A143496 (4-restricted Stirling2 numbers). See the e.g.f. given below. See also the Sheffer comments in A193685. - Wolfdieter Lang, Oct 08 2011

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Magma
    [7^n/6 - 6^n/2 + 5^n/2 - 4^n/6: n in [3..30]]; // Vincenzo Librandi, May 03 2013
  • Maple
    A003468:=1/(6*z-1)/(4*z-1)/(7*z-1)/(5*z-1); # conjectured by Simon Plouffe in his 1992 dissertation
  • Mathematica
    Table[7^n/6 - 6^n/2 + 5^n/2 - 4^n/6, {n, 3, 20}] (* Vaclav Kotesovec, Nov 19 2012 *)
    LinearRecurrence[{22,-179,638,-840},{1,22,305,3410},20] (* Harvey P. Dale, Jan 09 2024 *)

Formula

G.f.: x^3/((1 - 4*x)*(1 - 5*x)*(1 - 6*x)*(1 - 7*x)). - N. J. A. Sloane, May 12 1994, corrected by Vaclav Kotesovec, Nov 19 2012
E.g.f.: (exp(4*x)*(exp(x) - 1)^3)/6. More generally, e.g.f. for number of minimal m-covers of a labeled n-set is (exp((2^m - m - 1)*x)*(exp(x) - 1)^m)/m!. - Vladeta Jovovic, May 09 2004
If we define f(m, j, x) = sum(binomial(m, k)*stirling2(k, j)*x^(m - k),k = j .. m) then a(n) = f(n, 3, 4), (n >= 3). - Milan Janjic, Apr 26 2009
a(n) = 7^n/6 - 6^n/2 + 5^n/2 - 4^n/6. - Vaclav Kotesovec, Nov 19 2012

A057966 Triangle T(n,k) of number of minimal 5-covers of a labeled n-set that cover k points of that set uniquely (k=5,..,n).

Original entry on oeis.org

1, 156, 15, 14196, 2730, 140, 984256, 283920, 29120, 1050, 57578976, 22145760, 3407040, 245700, 6951, 2994106752, 1439474400, 295276800, 31941000, 1807260, 42525, 142719088512, 82337935680, 21112291200, 3045042000, 258438180
Offset: 5

Views

Author

Vladeta Jovovic, Oct 17 2000

Keywords

Comments

Row sums give A046166.

Examples

			[1], [156, 15], [14196, 2730, 140], [984256, 283920, 29120, 1050], ...; there are 15 minimal 5-covers of a labeled 6-set that cover 6 points of that set uniquely.
		

Crossrefs

Cf. A035347, A057669, A057963-A057965, A057967, A057968(unlabeled case).

Formula

Number of minimal m-covers of a labeled n-set that cover k points of that set uniquely is C(n, k)*S(k, m)*(2^m-m-1)^(n-k), where S(k, m) are Stirling numbers of the second kind.

A057668 Number of minimal 7-covers of a labeled n-set.

Original entry on oeis.org

1, 988, 549102, 226064280, 76785889587, 22762819040676, 6092115565691584, 1505097773271664000, 348617485585838373333, 76564317282173987801964, 16080209472530744351164146, 3250906483045575317042337960, 635954979082842132795003641239
Offset: 7

Views

Author

Vladeta Jovovic, Oct 16 2000

Keywords

Crossrefs

Formula

a(n) = (1/7!) * (127^n - 7 * 126^n + 21 * 125^n - 35 * 124^n + 35 * 123^n - 21 * 122^n + 7 * 121^n - 120^n).
G.f.: x^7 / ((120*x-1)*(121*x-1)*(122*x-1)*(123*x-1)*(124*x-1)*(125*x-1)*(126*x-1)*(127*x-1)). - Colin Barker, Jul 11 2013

Extensions

Additional term from Colin Barker, Jul 11 2013
Showing 1-3 of 3 results.